10,917 research outputs found

    Constitutional Impediments to Decentralization in the World\u27s Largest Federal Country

    Get PDF
    Decentralization is often advocated as a means of improving local democracy and enhancing what economists call allocative efficiency. In federal countries, where power is already divided between national and state governments, decentralization involves the devolution of power from state to local governments. The world’s largest federal country, India, took an unusual step to advance decentralization: it passed the 74th Constitutional Amendment Act to confer constitutional status on municipalities. However, India’s efforts to promote the devolution of power through a national urban renewal scheme have not succeeded for three reasons. The first is that India’s decentralization process is incomplete. Political decentralization has been stymied by the language of the constitutional amendment itself; administrative decentralization has been hampered by the comparative advantage of entrenched state-level institutions; and fiscal decentralization has not occurred because financial responsibility—but not significant revenue—has been devolved. The second reason is that decentralization has been undertaken in a top-down manner, which has exacerbated Center-state relations and mitigated the goal of allocative efficiency. Third is the relative weakness of local governance structures, which has created a Catch-22 situation: as long as the local governments lack significant capacity, the states are reluctant to devolve power to them. Additional effort needs to be directed towards an effective model of cooperative federalism. With Prime Minister Narendra Modi poised to create “smart cities” and promote urban renewal, it is critical to understand why India’s prior decentralization efforts have largely failed. The lessons learned over the past decade are an important guide to the future of cities in India as well as in other federal countrie

    Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    Get PDF
    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens

    ICAN: Integrated composites analyzer

    Get PDF
    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components

    Free-edge delamination: Laminate width and loading conditions effects

    Get PDF
    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progrssive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate

    Design Procedures for Fiber Composite Box Beams

    Get PDF
    Step-by-step procedures are described which can be used for the preliminary design of fiber composite box beams subjected to combined loadings. These procedures include a collection of approximate closed-form equations so that all the required calculations can be performed using pocket calculators. Included is an illustrated example of a tapered cantilever box beam subjected to combined loads. The box beam is designed to satisfy strength, displacement, buckling, and frequency requirements

    Progressive fracture of polymer matrix composite structures: A new approach

    Get PDF
    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized

    Composite interlaminar fracture toughness: Three-dimensional finite element modeling for mixed mode 1, 2 and 3 fracture

    Get PDF
    A computational method/procedure is described which can be used to simulate individual and mixed mode interlaminar fracture progression in fiber composite laminates. Different combinations of Modes 1, 2, and 3 fracture are simulated by varying the crack location through the specimen thickness and by selecting appropriate unsymmetric laminate configurations. The contribution of each fracture mode to strain energy release rate is determined by the local crack closure methods while the mixed mode is determined by global variables. The strain energy release rates are plotted versus extending crack length, where slow crack growth, stable crack growth, and rapid crack growth regions are easily identified. Graphical results are presented to illustrate the effectiveness and versatility of the computational simulation for: (1) evaluating mixed-mode interlaminar fracture, (2) for identifying respective dominant parameters, and (3) for selecting possible simple test methods

    METCAN: The metal matrix composite analyzer

    Get PDF
    Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code

    Computational simulation of high temperature metal matrix composite behavior

    Get PDF
    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composite (HT MMC) in the following four broad areas: (1) behavior of HT MMC from micromechanics to laminate; (2) HT MMC structural response for simple and complex structural components; (3) HT MMC microfracture; and (4) tailoring of HT MMC behavior for optimum specific performance. Representative results from each area are presented to illustrate the effectiveness of the computational simulation procedures. Relevant reports are referenced for extended discussion regarding the specific area

    Simplified design procedures for fiber composite structural components/joints

    Get PDF
    Simplified step-by-step design procedures are summarized, which are suitable for the preliminary design of composite structural components such as panels (laminates) and composite built-up structures (box beams). Similar procedures are also summarized for the preliminary design of composite bolted and adhesively bonded joints. The summary is presented in terms of sample design cases complemented with typical results. Guidelines are provided which can be used in the design selection process of composite structural components/joints. Also, procedures to account for cyclic loads, hygrothermal effects and lamination residual stresses are included
    corecore