89 research outputs found

    What happens to ART-eligible patients who do not start ART? Drop out between screening and ART initiation: a cohort study in Karonga, Malawi

    No full text
    BACKGROUND: Routine ART programme statistics generally only provide information about individuals who start treatment. We aimed to investigate the outcome of those who are eligible but do not start ART in the Malawi programme, factors associated with this dropout, and reasons for not starting treatment, in a prospective cohort study.METHODS: Individuals having a first screening visit at the ART clinic at Karonga District Hospital, northern Malawi, between September 2005 and July 2006 were interviewed. Study follow-up to identify treatment outcomes was conducted at the clinic and in the community. Logistic regression models were used to identify factors associated with dropout before ART initiation among participants identified as clinically eligible for ART.RESULTS: 88 participants eligible for ART at their first screening visit (out of 633, 13.9%) defaulted before starting ART. Participants with less education, difficulties in dressing, a more delayed ART initiation appointment, and mid-upper arm circumference (MUAC) < 22 cm were significantly less likely to have visited the clinic subsequently. Thirty-five (58%) of the 60 participants who defaulted and were tracked at home had died, 21 before their ART initiation appointment.CONCLUSIONS: MUAC and reported difficulties in dressing may provide useful screening indicators to identify sicker ART-eligible individuals at high risk of dropping out of the programme who might benefit from being brought back quickly or admitted to hospital for observation. Individuals with less education may need adapted health information at screening. Deaths of ART-eligible individuals occurring prior to ART initiation are not included in routine programme statistics. Considering all those who are eligible for ART as a denominator for programme indicators would help to highlight this vulnerable group, in order to identify new opportunities for further improving ART programmes

    Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi

    Get PDF
    To combat the high burden of rotavirus gastroenteritis, multiple African countries have introduced rotavirus vaccines into their childhood immunization programs. Malawi incorporated a G1P[8] rotavirus vaccine (Rotarix) into its immunization schedule in 2012. Utilizing a surveillance platform of hospitalized rotavirus gastroenteritis cases, we examined the phylodynamics of G1P[8] rotavirus strains that circulated in Malawi before (1998 to 2012) and after (2013 to 2014) vaccine introduction. Analysis of whole genomes obtained through next-generation sequencing revealed that all randomly selected prevaccine G1P[8] strains sequenced (n = 32) possessed a Wa-like genetic constellation, whereas postvaccine G1P[8] strains (n = 18) had a DS-1-like constellation. Phylodynamic analyses indicated that postvaccine G1P[8] strains emerged through reassortment events between human Wa- and DS-1-like rotaviruses that circulated in Malawi from the 1990s and hence were classified as atypical DS-1-like reassortants. The time to the most recent common ancestor for G1P[8] strains was from 1981 to 1994; their evolutionary rates ranged from 9.7 × 10−4 to 4.1 × 10−3 nucleotide substitutions/site/year. Three distinct G1P[8] lineages chronologically replaced each other between 1998 and 2014. Genetic drift was the likely driver for lineage turnover in 2005, whereas replacement in 2013 was due to reassortment. Amino acid substitution within the outer glycoprotein VP7 of G1P[8] strains had no impact on the structural conformation of the antigenic regions, suggesting that it is unlikely that they would affect recognition by vaccine-induced neutralizing antibodies. While the emergence of DS-1-like G1P[8] rotavirus reassortants in Malawi was therefore likely due to natural genotype variation, vaccine effectiveness against such strains needs careful evaluation. IMPORTANCE: The error-prone RNA-dependent RNA polymerase and the segmented RNA genome predispose rotaviruses to genetic mutation and genome reassortment, respectively. These evolutionary mechanisms generate novel strains and have the potential to lead to the emergence of vaccine escape mutants. While multiple African countries have introduced a rotavirus vaccine, there are few data describing the evolution of rotaviruses that circulated before and after vaccine introduction. We report the emergence of atypical DS-1-like G1P[8] strains during the postvaccine era in Malawi. Three distinct G1P[8] lineages circulated chronologically from 1998 to 2014; mutation and reassortment drove lineage turnover in 2005 and 2013, respectively. Amino acid substitutions within the outer capsid VP7 glycoprotein did not affect the structural conformation of mapped antigenic sites, suggesting a limited effect on the recognition of G1-specific vaccine-derived antibodies. The genes that constitute the remaining genetic backbone may play important roles in immune evasion, and vaccine effectiveness against such atypical strains needs careful evaluation

    Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV

    Get PDF
    Background: Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods: We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results: Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn’t significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion: Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Omicron B.1.1.529 variant infections associated with severe disease are uncommon in a COVID-19 under-vaccinated, high SARS-CoV-2 seroprevalence population in Malawi.

    Get PDF
    BACKGROUND: The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. METHODS: We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalisations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. A multivariable logistic regression model was developed to investigate the factors associated with SARS-CoV-2 seropositivity. FINDINGS: Serum samples were analysed from 4619 participants (57% female; 60% aged 18-50 years), of whom 878/3794 (23%) of vaccine eligible adults had received a single dose of any COVID-19 vaccine. The overall assay-adjusted seroprevalence was 83.7% (95% confidence interval (CI), 79.3%-93.4%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18-50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (1 dose, 94% vs. 77%, adjusted odds ratio 4.89 [95% CI, 3.43-7.22]; 2 doses, 97% vs. 77%, aOR 6.62 [95% CI, 4.14-11.3]). Urban residents were more likely to be seropositive than those from rural settings (91% vs. 78%, aOR 2.76 [95% CI, 2.16-3.55]). There was at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalisations, 10.7% (95% CI, 10.2-11.3) vs. 4.86% (95% CI, 4.52-5.23), p < 0.0001; deaths, 3.48% (95% CI, 3.18-3.81) vs. 1.15% (95% CI, 1.00-1.34), p < 0.0001). INTERPRETATION: We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence and low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of reported at-risk populations. FUNDING: Supported by the Bill and Melinda Gates Foundation (INV-039481)

    Immunometabolic signatures predict risk of progression to active tuberculosis and disease outcome

    Get PDF
    Data Availability: All datasets generated for this study are included in the manuscript with the exception of the rhesus macaque metabolics data which is included as Table S6 [https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.00527/full#SM14].Supplementary Material is available online at: https://www.frontiersin.org/articles/10.3389/fimmu.2019.00527/full#supplementary-material .There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes.This work was supported by the Bill & Melinda Gates Foundation (BMGF) Grand Challenges in Global Health (GC6-74 grant 37772, OPP1055806 and OPP1087783 in conjunction with AERAS). This work was also supported by a Strategic Health Innovation Partnership grant from the South African Medical Research Council and Department of Science and Technology/South African Tuberculosis Bioinformatics Initiative. Additional support was provided by the European Union FP7 (ADITEC, 280873 and TBVAC2020, 643381) and the National Institutes of Health [U19 AI106761 and U19 AI135976]. FD was supported by the NCDIR (National Institutes of Health [P41 GM109824]). DT and GT were supported by South African Medical Research Council SHIP funding for the South African Tuberculosis Bioinformatics Initiative to GW
    corecore