16,436 research outputs found
Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots
We investigate the effects of finite temperature, dc pulse, and ac drives on
the charge transport in metallic arrays using numerical simulations. For finite
temperatures there is a finite conduction threshold which decreases linearly
with temperature. Additionally we find a quadratic scaling of the
current-voltage curves which is independent of temperature for finite
thresholds. These results are in excellent agreement with recent experiments on
2D metallic dot arrays. We have also investigated the effects of an ac drive as
well as a suddenly applied dc drive. With an ac drive the conduction threshold
decreases for fixed frequency and increasing amplitude and saturates for fixed
amplitude and increasing frequency. For sudden applied dc drives below
threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure
Dynamical Ordering of Driven Stripe Phases in Quenched Disorder
We examine the dynamics and stripe formation in a system with competing short
and long range interactions in the presence of both an applied dc drive and
quenched disorder. Without disorder, the system forms stripes organized in a
labyrinth state. We find that, when the disorder strength exceeds a critical
value, an applied dc drive can induce a dynamical stripe ordering transition to
a state that is more ordered than the originating undriven, unpinned pattern.
We show that signatures in the structure factor and transport properties
correspond to this dynamical reordering transition, and we present the dynamic
phase diagram as a function of strengths of disorder and dc drive.Comment: 4 pages, 4 postscript figure
Cold atom confinement in an all-optical dark ring trap
We demonstrate confinement of Rb atoms in a dark, toroidal optical
trap. We use a spatial light modulator to convert a single blue-detuned
Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a
ring-shaped intensity null bounded harmonically in all directions. We measure a
1/e spin-relaxation lifetime of ~1.5 seconds for a trap detuning of 4.0 nm. For
smaller detunings, a time-dependent relaxation rate is observed. We use these
relaxation rate measurements and imaging diagnostics to optimize trap alignment
in a programmable manner with the modulator. The results are compared with
numerical simulations.Comment: 5 pages, 4 figure
A nullstellensatz for sequences over F_p
Let p be a prime and let A=(a_1,...,a_l) be a sequence of nonzero elements in
F_p. In this paper, we study the set of all 0-1 solutions to the equation a_1
x_1 + ... + a_l x_l = 0. We prove that whenever l >= p, this set actually
characterizes A up to a nonzero multiplicative constant, which is no longer
true for l < p. The critical case l=p is of particular interest. In this
context, we prove that whenever l=p and A is nonconstant, the above equation
has at least p-1 minimal 0-1 solutions, thus refining a theorem of Olson. The
subcritical case l=p-1 is studied in detail also. Our approach is algebraic in
nature and relies on the Combinatorial Nullstellensatz as well as on a Vosper
type theorem.Comment: 23 page
Proposal for an Experiment to Test a Theory of High Temperature Superconductors
A theory for the phenomena observed in Copper-Oxide based high temperature
superconducting materials derives an elusive time-reversal and rotational
symmetry breaking order parameter for the observed pseudogap phase ending at a
quantum-critical point near the composition for the highest . An
experiment is proposed to observe such a symmetry breaking. It is shown that
Angle-resolved Photoemission yields a current density which is different for
left and right circularly polarized photons. The magnitude of the effect and
its momentum dependence is estimated. Barring the presence of domains of the
predicted phase an asymmetry of about 0.1 is predicted at low temperatures in
moderately underdoped samples.Comment: latex, 2 figure
Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media
We examine the dynamics of an elastic string interacting with quenched
disorder driven perpendicular and parallel to the string. We show that the
string is the most disordered at the depinning transition but with increasing
drive partial ordering is regained. For low drives the noise power is high and
we observe a 1/f^2 noise signature crossing over to a white noise character
with low power at higher drives. For the parallel driven moving string there is
a finite transverse critical depinning force with the depinning transition
occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure
Driven vortices in 3D layered superconductors: Dynamical ordering along the c-axis
We study a 3D model of driven vortices in weakly coupled layered
superconductors with strong pinning. Above the critical force , we find a
plastic flow regime in which pancakes in different layers are uncoupled,
corresponding to a pancake gas. At a higher , there is an ``smectic flow''
regime with short-range interlayer order, corresponding to an entangled line
liquid. Later, the transverse displacements freeze and vortices become
correlated along the c-axis, resulting in a transverse solid. Finally, at a
force the longitudinal displacements freeze and we find a coherent solid
of rigid lines.Comment: 4 pages, 3 postscript figure
Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational “hotspot” in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery (n = 2) or 8 weeks after systemic delivery (n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Moving Wigner Glasses and Smectics: Dynamics of Disordered Wigner Crystals
We examine the dynamics of driven classical Wigner solids interacting with
quenched disorder from charged impurities. For strong disorder, the initial
motion is plastic -- in the form of crossing winding channels. For increasing
drive, the disordered Wigner glass can reorder to a moving Wigner smectic --
with the electrons moving in non-crossing 1D channels. These different dynamic
phases can be related to the conduction noise and I(V) curves. For strong
disorder, we show criticality in the voltage onset just above depinning. We
also obtain the dynamic phase diagram for driven Wigner solids and prove that
there is a finite threshold for transverse sliding, recently found
experimentally.Comment: 4 pages, 4 postscript figure
- …
