233 research outputs found

    Comparison of next-generation portable pollution monitors to measure exposure to PM2.5 from household air pollution in Puno, Peru.

    Get PDF
    Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3 ) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3 ) and personal exposure samples (ECM mean difference of -3.8 µg/m3 vs UPAS mean difference of -12.9 µg/m3 ). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup

    El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    Get PDF
    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services

    Emission factors from residential combustion appliances burning Portuguese biomass fuels

    Get PDF
    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5–99.2 g CO kg 1, 552–1660 g CO2 kg 1, 0.66– 1.34 g NO kg 1, and 0.82–4.94 g hydrocarbons kg 1 of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg 1 biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24–10.1 and 0.18–0.68 g kg 1 biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energyefficient ‘‘chimney type’’ logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons

    Estimating the burden of disease attributable to four selected environmental risk factors in South Africa

    Get PDF
    The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure.The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty.Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease.This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels

    Effects of thymic selection of the T cell repertoire on HLA-class I associated control of HIV infection

    Get PDF
    Without therapy, most people infected with human immunodeficiency virus (HIV) ultimately progress to AIDS. Rare individuals (‘elite controllers’) maintain very low levels of HIV RNA without therapy, thereby making disease progression and transmission unlikely. Certain HLA class I alleles are markedly enriched in elite controllers, with the highest association observed for HLA-B57 (ref. 1). Because HLA molecules present viral peptides that activate CD8+ T cells, an immune-mediated mechanism is probably responsible for superior control of HIV. Here we describe how the peptide-binding characteristics of HLA-B57 molecules affect thymic development such that, compared to other HLA-restricted T cells, a larger fraction of the naive repertoire of B57-restricted clones recognizes a viral epitope, and these T cells are more cross-reactive to mutants of targeted epitopes. Our calculations predict that such a T-cell repertoire imposes strong immune pressure on immunodominant HIV epitopes and emergent mutants, thereby promoting efficient control of the virus. Supporting these predictions, in a large cohort of HLA-typed individuals, our experiments show that the relative ability of HLA-B alleles to control HIV correlates with their peptide-binding characteristics that affect thymic development. Our results provide a conceptual framework that unifies diverse empirical observations, and have implications for vaccination strategies.Mark and Lisa Schwartz FoundationNational Institutes of Health (U.S.) (Director’s Pioneer award)Philip T. and Susan M. Ragon FoundationJane Coffin Childs Memorial Fund for Medical ResearchBill & Melinda Gates FoundationNational Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (contract no. HHSN261200800001E)National Institutes of Health (U.S.). Intramural Research ProgramNational Cancer Institute (U.S.)Center for Cancer Research (National Cancer Institute (U.S.)

    Compensating control participants when the intervention is of significant value: experience in Guatemala, India, Peru and Rwanda

    Get PDF
    The Household Air Pollution Intervention Network (HAPIN) trial is a randomised controlled trial in Guatemala, India, Peru and Rwanda to assess the health impact of a clean cooking intervention in households using solid biomass for cooking. The HAPIN intervention—a liquefied petroleum gas (LPG) stove and 18-month supply of LPG—has significant value in these communities, irrespective of potential health benefits. For control households, it was necessary to develop a compensation strategy that would be comparable across four settings and would address concerns about differential loss to follow-up, fairness and potential effects on household economics. Each site developed slightly different, contextually appropriate compensation packages by combining a set of uniform principles with local community input. In Guatemala, control compensation consists of coupons equivalent to the LPG stove’s value that can be redeemed for the participant’s choice of household items, which could include an LPG stove. In Peru, control households receive several small items during the trial, plus the intervention stove and 1 month of fuel at the trial’s conclusion. Rwandan participants are given small items during the trial and a choice of a solar kit, LPG stove and four fuel refills, or cash equivalent at the end. India is the only setting in which control participants receive the intervention (LPG stove and 18 months of fuel) at the trial’s end while also being compensated for their time during the trial, in accordance with local ethics committee requirements. The approaches presented here could inform compensation strategy development in future multi-country trials

    Earthquake-triggered submarine canyon flushing transfers young terrestrial and marine organic carbon into the deep sea

    Get PDF
    Submarine canyons transfer substantial amounts of sediment and organic carbon (OC) into the deep ocean, nourishing deep-sea ecosystems and contributing to the global carbon cycle through OC burial and sequestration. Tracking lateral OC transport through submarine canyon systems is challenged by the deep-ocean setting, difficulties with constraining episodic depositional events, and the need to assess the composition and age of marine and terrestrial organic matter. We apply innovative parallel ramped pyrolysis oxidation-accelerator mass spectrometry and pyrolysis-gas chromatography-mass spectrometry with isotope analyses to track OC age and sources in the 2016 Kaikōura earthquake-triggered, canyon-flushing event that deposited along >1300 km of a submarine canyon-channel system, offshore Aotearoa New Zealand. Specifically, these techniques allow us to determine the ages, sources, and partitioning of OC within the Kaikōura turbidite deposit and test hypotheses of how submarine canyon systems contribute to lateral OC flux and burial. Our results show that, despite considerable canyon floor erosion, substantial amounts of young OC were flushed into the deep sea, with relatively little (∼2 %) pre-Holocene OC contributions. Even without a direct connection between rivers and submarine canyons, most (∼55 %) of the OC in the Kaikōura event bed is from terrestrial sources. However, the deposit also contains substantial amounts (∼22 %) of marine-derived OC and ∼23 % of the material is of unassignable origin. Particle sorting imparts variability on the age and composition of OC within turbidite deposits and along the turbidity current flow path. Terrestrial-derived OC is preferentially older than marine-derived OC and concentrated in coarser particle sizes found more commonly at the deposit base and in proximal settings. Young, marine-derived OC is concentrated at the surface of the deposits and tends to be enriched in finer particle sizes. Such OC partitioning in turbidites supports the relevance of depositional models for predicting and quantifying distribution of OC in deep-sea deposits. Earthquake-triggered, canyon flushing events and resulting turbidites enhance OC burial efficiency and can sequester OC effectively, contributing an important carbon sink to the sedimentary carbon cycle
    corecore