15,003 research outputs found

    Luminosity Function of the Perigalactocentric Region

    Get PDF
    We present H and K photometry of 42,000 stars in an area of 250 arcmin2^{2} centered on the Galactic center. We use the photometry to construct a dereddened K band luminosity function (LF) for this region, excluding the excessively crowded inner 2' of the Galaxy. This LF is intermediate between the LF of Baade's window and the LF of inner 2' of the Galactic center. We speculate that the bright stars in this region have an age which is intermediate between the starburst population in the Galactic center and the old bulge population. We present the coordinates and mags for 16 stars with K_{0} < 5 for spectroscopic follow up.Comment: 25 pages. Tarred, gzipped and uuencoded. Includes LaTex source file, Figures 3 to 9 and 5 Tables. Figures 1 and 2 are available at ftp://bessel.mps.ohio-state.edu/pub/vijay . Submitted to Ap

    Phosphorylation of the Arp2 subunit relieves auto-inhibitory interactions for Arp2/3 complex activation.

    Get PDF
    Actin filament assembly by the actin-related protein (Arp) 2/3 complex is necessary to build many cellular structures, including lamellipodia at the leading edge of motile cells and phagocytic cups, and to move endosomes and intracellular pathogens. The crucial role of the Arp2/3 complex in cellular processes requires precise spatiotemporal regulation of its activity. While binding of nucleation-promoting factors (NPFs) has long been considered essential to Arp2/3 complex activity, we recently showed that phosphorylation of the Arp2 subunit is also necessary for Arp2/3 complex activation. Using molecular dynamics simulations and biochemical assays with recombinant Arp2/3 complex, we now show how phosphorylation of Arp2 induces conformational changes permitting activation. The simulations suggest that phosphorylation causes reorientation of Arp2 relative to Arp3 by destabilizing a network of salt-bridge interactions at the interface of the Arp2, Arp3, and ARPC4 subunits. Simulations also suggest a gain-of-function ARPC4 mutant that we show experimentally to have substantial activity in the absence of NPFs. We propose a model in which a network of auto-inhibitory salt-bridge interactions holds the Arp2 subunit in an inactive orientation. These auto-inhibitory interactions are destabilized upon phosphorylation of Arp2, allowing Arp2 to reorient to an activation-competent state

    Numerical computation of the beta function of large N SU(N) gauge theory coupled to an adjoint Dirac fermion

    Full text link
    We use a single site lattice in four dimensions to study the scaling of large N Yang-Mills field coupled to a single massless Dirac fermion in the adjoint representation. We use the location of the strong to weak coupling transition defined through the eigenvalues of the folded Wilson loop operator to set a scale. We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is another scale that shows similar behavior as a function of the lattice coupling. We speculate that this behavior is due to the beta function appoaching close to a zero.Comment: 16 pages, 9 figures, revised version DOES NOT match the published version in Physical Review

    Chiral Symmetry Restoration in the Schwinger Model with Domain Wall Fermions

    Get PDF
    Domain Wall Fermions utilize an extra space time dimension to provide a method for restoring the regularization induced chiral symmetry breaking in lattice vector gauge theories even at finite lattice spacing. The breaking is restored at an exponential rate as the size of the extra dimension increases. Before this method can be used in dynamical simulations of lattice QCD, the dependence of the restoration rate to the other parameters of the theory and, in particular, the lattice spacing must be investigated. In this paper such an investigation is carried out in the context of the two flavor lattice Schwinger model.Comment: LaTeX, 37 pages including 18 figures. Added comments regarding power law fitting in sect 7. Also, few changes were made to elucidate the content in sect. 5.1 and 5.3. To appear in Phys. Rev.

    In silico estimates of the free energy rates in growing tumor spheroids

    Full text link
    The physics of solid tumor growth can be considered at three distinct size scales: the tumor scale, the cell-extracellular matrix (ECM) scale and the sub-cellular scale. In this paper we consider the tumor scale in the interest of eventually developing a system-level understanding of the progression of cancer. At this scale, cell populations and chemical species are best treated as concentration fields that vary with time and space. The cells have chemo-mechanical interactions with each other and with the ECM, consume glucose and oxygen that are transported through the tumor, and create chemical byproducts. We present a continuum mathematical model for the biochemical dynamics and mechanics that govern tumor growth. The biochemical dynamics and mechanics also engender free energy changes that serve as universal measures for comparison of these processes. Within our mathematical framework we therefore consider the free energy inequality, which arises from the first and second laws of thermodynamics. With the model we compute preliminary estimates of the free energy rates of a growing tumor in its pre-vascular stage by using currently available data from single cells and multicellular tumor spheroids.Comment: 27 pages with 5 figures and 2 tables. Figures and tables appear at the end of the pape

    Probing the Region of Massless Quarks in Quenched Lattice QCD using Wilson Fermions

    Full text link
    We study the spectrum of H(m)=γ5W(m)H(m)=\gamma_5 W(-m) with W(m)W(m) being the Wilson-Dirac operator on the lattice with bare mass equal to mm. The background gauge fields are generated using the SU(3) Wilson action at β=5.7\beta=5.7 on an 83×168^3\times 16 lattice. We find evidence that the spectrum of H(m)H(m) is gapless for 1.02<m<2.01.02 < m < 2.0, implying that the physical quark is massless in this whole region.Comment: 22 pages, LaTeX file, uses elsart.sty, includes 11 figures A typographical error in one reference has been fixe

    Two dimensional fermions in three dimensional YM

    Full text link
    Dirac fermions in the fundamental representation of SU(N) live on the surface of a cylinder embedded in R3R^3 and interact with a three dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite NN. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite NN limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.Comment: 21 pages, 7 figures, 5 table

    Domain-wall fermions with U(1)U(1) dynamical gauge fields

    Get PDF
    We have carried out a numerical simulation of a domain-wall model in (2+1)(2+1)-dimensions, in the presence of a dynamical gauge field only in an extra dimension, corresponding to the weak coupling limit of a ( 2-dimensional ) physical gauge coupling. Using a quenched approximation we have investigated this model at βs(=1/gs2)=\beta_{s} ( = 1 / g^{2}_{s} ) = 0.5 ( ``symmetric'' phase), 1.0, and 5.0 (``broken'' phase), where gsg_s is the gauge coupling constant of the extra dimension. We have found that there exists a critical value of a domain-wall mass m0cm_{0}^{c} which separates a region with a fermionic zero mode on the domain-wall from the one without it, in both symmetric and broken phases. This result suggests that the domain-wall method may work for the construction of lattice chiral gauge theories.Comment: 27 pages (11 figures), latex (epsf style-file needed

    Transport Anomalies and Marginal Fermi-Liquid Effects at a Quantum Critical Point

    Full text link
    The behavior of the conductivity and the density of states, as well as the phase relaxation time, of disordered itinerant electrons across a quantum ferromagnetic transition is discussed. It is shown that critical fluctuations lead to anomalies in the temperature and energy dependence of the conductivity and the tunneling density of states, respectively, that are stronger than the usual weak-localization anomalies in a disordered Fermi liquid. This can be used as an experimental probe of the quantum critical behavior. The energy dependence of the phase relaxation time at criticality is shown to be that of a marginal Fermi liquid.Comment: 4 pp., LaTeX, no figs., requires World Scientific style files (included), Contribution to MB1

    PZT Sensor Arrays for Integrated Damage Monitoring in Concrete Structures

    Get PDF
    The broad objective of the work reported here is to provide a fundamental basis for the use of Lead Zirconate Titanate (PZT) patches in damage detection of concrete structures. Damage initiation in concrete structures starts with distributed microcracks, which eventually localize to form cracks. By the time surface manifestation in the form of visible cracking appears there may be significant degradation of the capacity of the structure. Early detection of damage, before visible signs appear on the surface of the structure is essential to initiate early intervention, which can effectively increase the service life of structures. Development of monitoring methodologies involves understanding the underlying phenomena and providing a physical basis for interpreting the observed changes in the parameters which are sensed. PZT is a piezoelectric material, which has a coupled constitutive relationship. In the case of the PZT patches bonded to a concrete structure, any sensing strategy requires developing an understanding of the coupled electromechanical (EM) response of the PZT-concrete system. The challenges associated with the use of PZT patches for damage monitoring in a concrete substrate include providing the following: a clear understanding of the fundamental response of the PZT patch when bonded to a concrete substrate; interpretation of the coupled response of the PZT patch under load induced damage; and development of an efficient, continuous monitoring methodology to sense a large area of the concrete substrate. Due to a lack of a fundamental basis, the use of PZT patches in concrete structures often involves inferring the measured response using model-based procedures. The work outlined in this thesis addresses the key issue of developing the theoretical basis and providing an experimental validation for PZT-based damage monitoring methodology for concrete structures. A fundamental understanding of response of the PZT patch when bonded to concrete substrate is developed. The outcome of the work is an integrated local and distributed sensing methodology for concrete structures by combining the electromechanical impedance and stress wave propagation methods using an array of bonded PZT patches. The work presented in this thesis is focused on using PZT patches bonded to a concrete substrate. A fundamental understanding of the coupled electromechanical behaviour of a PZT patch under an applied electrical excitation in an electrical impedance (EI) measurement, is developed. The influence of the substrate size and its material properties on the frequency dependent EI response of a PZT patch is investigated using concrete substrates of different sizes. The dynamic response of a PZT patch is shown to consist of resonance modes of the PZT patch with superimposed structural response. The resonance behaviour of the PZT patch is shown to be influenced by the material properties of the substrate. The size dependence in the EI response of a PZT patch bonded to a concrete substrate is produced by the dynamic behaviour of the structure. The size of the local zone of the concrete material substrate in the vicinity of the bonded PZT patch, which influences the frequency dependent EI response of the PZT patch is identified. For each resonant mode, a local zone of influence, which is free from the influence of boundary is identified. The dynamic response of the PZT resonant mode is influenced by the elastic material properties and damping within the zone of influence. The structural effects of the concrete substrate produced by the finite size of the specimen are separated from the material effects produced by the material properties and the material damping in the coupled EM response of the bonded PZT patch. The influence of size of the concrete substrate on the coupled impedance response of the PZT is identified with peaks of structural resonance, which are superimposed on the resonant peaks of the bonded PZT patch The EI response of the PZT patch when bonded to concrete for detecting load-induced damage from distributed microcrack to localized cracks within the zone of influence of the PZT patch is investigated. Using an approach which combines an understanding of the coupled EM constitutive behaviour of PZT with experimental validation, a methodology is developed to decouple the effects of stress and damage in the substrate on the coupled EM response of a PZT patch. The features in the EI signature of a bonded PZT patch associated with stress and damage are identified. An increasing level of distributed damage in the concrete substrate produces a decrease in the magnitude and the frequency of the resonant peak of the bonded PZT patch. The substrate stress produces a counter acting effect in the EI spectrum of the bonded PZT patch. A measurement procedure for the use of bonded PZT patches for continuous monitoring of stress-induced damage in the form of distributed microcracks in a structure under loading is developed. An integrated methodology for damage monitoring in concrete structures is developed by combining the EI method for local sensing and the stress wave propagation-based method in a distributed sensing mode. An array of surface mounted PZT sensors are deployed on a concrete beam. The EI measurements from individual PZT sensors are used for detecting damage within the local zone of influence. PZT sensor pairs are used as actuators and sensors for distributed monitoring using stress wave propagation. A stress-induced crack is introduced in a controlled manner. It is detected very accurately from the full-field displacement measurement obtained using digital image correlation. The crack opening profile in concrete produced by the fracture is established from the surface displacement measurements. From the measurements of bonded PZTs, the localized crack is detected in the zone of influence by EI. The change in compliance of the material medium due to a localized crack is small and it is reflected in the smaller change in the measured EI when compared to distributed damage. Stress wave based measurements sensitively detect crack openings on the order of 10m. The material discontinuity produced by a closed crack, after removal of the stress is also detected. A damage matrix is developed for stress wave based method which is independent of transmission path to assess the severity of damage produced by the crack in a concrete structure
    corecore