16,530 research outputs found
Properties of Galactic Outflows: Measurements of the Feedback from Star Formation
Properties of starburst-driven outflows in dwarf galaxies are compared to
those in more massive galaxies. Over a factor of roughly 10 in galactic
rotation speed, supershells are shown to lift warm ionized gas out of the disk
at rates up to several times the star formation rate. The amount of mass
escaping the galactic potential, in contrast to the disk, does depend on the
galactic mass. The temperature of the hottest extended \x emission shows little
variation around K, and this gas has enough energy to escape
from the galaxies with rotation speed less than approximately 130 km/s.Comment: 11 pages + 3 figues. Accepted for publication in the Astrophysical
Journa
Double percolation effects and fractal behavior in magnetic/superconducting hybrids
Perpendicular magnetic anisotropy ferromagnetic/ superconducting (FM/SC)
bilayers with a labyrinth domain structure are used to study nucleation of
superconductivity on a fractal network, tunable through magnetic history. As
clusters of reversed domains appear in the FM layer, the SC film shows a
percolative behavior that depends on two independent processes: the arrangement
of initial reversed domains and the fractal geometry of expanding clusters. For
a full labyrinth structure, the behavior of the upper critical field is typical
of confined superconductivity on a fractal network.Comment: 15 pages, 5 figure
The Origin and Kinematics of Cold Gas in Galactic Winds: Insight from Numerical Simulations
We study the origin of Na I absorbing gas in ultraluminous infrared galaxies
motivated by the recent observations by Martin of extremely superthermal
linewidths in this cool gas. We model the effects of repeated supernova
explosions driving supershells in the central regions of molecular disks with
M_d=10^10 M_\sun, using cylindrically symmetric gas dynamical simulations run
with ZEUS-3D. The shocked swept-up shells quickly cool and fragment by
Rayleigh-Taylor instability as they accelerate out of the dense, stratified
disks. The numerical resolution of the cooling and compression at the shock
fronts determines the peak shell density, and so the speed of Rayleigh-Taylor
fragmentation. We identify cooled shells and shell fragments as Na I absorbing
gas and study its kinematics. We find that simulations with a numerical
resolution of \le 0.2 pc produce multiple Rayleigh-Taylor fragmented shells in
a given line of sight. We suggest that the observed wide Na I absorption lines,
= 320 \pm 120 km s^-1 are produced by these multiple fragmented shells
traveling at different velocities. We also suggest that some shell fragments
can be accelerated above the observed average terminal velocity of 750 km s^-1
by the same energy-driven wind with an instantaneous starburst of \sim 10^9
M_\sun. The bulk of mass is traveling with the observed average shell velocity
330 \pm 100 km s^-1. Our results show that an energy-driven bubble causing
Rayleigh-Taylor instabilities can explain the kinematics of cool gas seen in
the Na I observations without invoking additional physics relying primarily on
momentum conservation, such as entrainment of gas by Kelvin-Helmholtz
instabilities, ram pressure driving of cold clouds by a hot wind, or radiation
pressure acting on dust. (abridged)Comment: 65 pages, 22 figures, accepted by Astrophys. J. Changes during
refereeing focused on context and comparison to observation
Ianus: an Adpative FPGA Computer
Dedicated machines designed for specific computational algorithms can
outperform conventional computers by several orders of magnitude. In this note
we describe {\it Ianus}, a new generation FPGA based machine and its basic
features: hardware integration and wide reprogrammability. Our goal is to build
a machine that can fully exploit the performance potential of new generation
FPGA devices. We also plan a software platform which simplifies its
programming, in order to extend its intended range of application to a wide
class of interesting and computationally demanding problems. The decision to
develop a dedicated processor is a complex one, involving careful assessment of
its performance lead, during its expected lifetime, over traditional computers,
taking into account their performance increase, as predicted by Moore's law. We
discuss this point in detail
Bohmian transmission and reflection dwell times without trajectory sampling
Within the framework of Bohmian mechanics dwell times find a straightforward
formulation. The computation of associated probabilities and distributions
however needs the explicit knowledge of a relevant sample of trajectories and
therefore implies formidable numerical effort. Here a trajectory free
formulation for the average transmission and reflection dwell times within
static spatial intervals [a,b] is given for one-dimensional scattering
problems. This formulation reduces the computation time to less than 5% of the
computation time by means of trajectory sampling.Comment: 14 pages, 7 figures; v2: published version, significantly revised and
shortened (former sections 2 and 3 omitted, appendix A added, simplified
mathematics
The ISLANDS project I: Andromeda XVI, An Extremely Low Mass Galaxy not Quenched by Reionization
Based on data aquired in 13 orbits of HST time, we present a detailed
evolutionary history of the M31 dSph satellite Andromeda XVI, including its
life-time star formation history, the spatial distribution of its stellar
populations, and the properties of its variable stars. And XVI is characterized
by prolonged star formation activity from the oldest epochs until star
formation was quenched ~6 Gyr ago, and, notably, only half of the mass in stars
of And XVI was in place 10 Gyr ago. And XVI appears to be a low mass galaxy for
which the early quenching by either reionization or starburst feedback seems
highly unlikely, and thus, is most likely due to an environmental effect (e.g.,
an interaction), possibly connected to a late infall in the densest regions of
the Local Group. Studying the star formation history as a function of
galactocentric radius, we detect a mild gradient in the star formation history:
the star formation activity between 6 and 8 Gyr ago is significantly stronger
in the central regions than in the external regions, although the quenching age
appears to be the same, within 1 Gyr. We also report the discovery of 9 RR
Lyrae stars, 8 of which belong to And XVI. The RR Lyrae stars allow a new
estimate of the distance, (m-M)0= 23.72+/-0.09 mag, which is marginally larger
than previous estimates based on the tip of the red giant branch.Comment: Accepted for publication on Ap
Critical properties of the four-state Commutative Random Permutation Glassy Potts model in three and four dimensions
We investigate the critical properties of the four-state commutative random
permutation glassy Potts model in three and four dimensions by means of Monte
Carlo simulation and of a finite size scaling analysis. Thanks to the use of a
field programmable gate array we have been able to thermalize a large number of
samples of systems with large volume. This has allowed us to observe a
spin-glass ordered phase in d=4 and to study the critical properties of the
transition. In d=3, our results are consistent with the presence of a
Kosterlitz-Thouless transition, but we cannot exclude transient effects due to
a value of the lower critical dimension slightly below 3.Comment: 9 pages, 8 Postscript figure
Inflation on the Brane with Vanishing Gravity
Many existing models of brane inflation suffer from a steep irreducible
gravitational potential between the branes that causes inflation to end too
early. Inspired by the fact that point masses in 2+1 D exert no gravitational
force, we propose a novel unwarped and non-supersymmetric setup for inflation,
consisting of 3-branes in two extra dimensions compactified on a sphere. The
size of the sphere is stabilized by a combination of a bulk cosmological
constant and a magnetic flux. Computing the 4D effective potential between
probe branes in this background, we find a non-zero contribution only from
exchange of level-1 KK modes of the graviton and radion. Identifying antipodal
points on the 2-sphere projects out these modes, eliminating entirely the
troublesome gravitational contribution to the inflationary potential.Comment: 19 pages, 11 figures, JHEP forma
The Spin Glass Phase in the Four-State, Three-Dimensional Potts Model
We perform numerical simulations, including parallel tempering, on the Potts
glass model with binary random quenched couplings using the JANUS
application-oriented computer. We find and characterize a glassy transition,
estimating the location of the transition and the value of the critical
exponents. We show that there is no ferromagnetic transition in a large
temperature range around the glassy critical temperature. We also compare our
results with those obtained recently on the "random permutation" Potts glass.Comment: 7 pages and 3 figures. Corrected minor typo
- …
