696 research outputs found

    Interstellar Turbulence and Star Formation

    Full text link
    We provide a brief overview of recent advances and outstanding issues in simulations of interstellar turbulence, including isothermal models for interior structure of molecular clouds and larger-scale multiphase models designed to simulate the formation of molecular clouds. We show how self-organization in highly compressible magnetized turbulence in the multiphase ISM can be exploited in simple numerical models to generate realistic initial conditions for star formation.Comment: 8 pages, 5 color figures; submitted to Proceedings of IAU Symposium 270 "Computational Star Formation" held in Barcelona, May 31 - June 4, 201

    Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs

    Get PDF
    <div><p>In many parts of the world the damaging potato late blight pathogen, <i>Phytophthora infestans</i>, is spread as a succession of clonal lineages. The discrimination of genetic diversity within such evolving populations provides insights into the processes generating novel lineages and the pathways and drivers of pathogen evolution and dissemination at local and global scales. This knowledge, in turn, helps optimise management practices. Here we combine two key methods for dissecting mitochondrial and nuclear diversity and resolve intra and inter-lineage diversity of over 100 <i>P</i>. <i>infestans</i> isolates representative of key clonal lineages found globally. A novel set of PCR primers that amplify five target regions are provided for mitochondrial DNA sequence analysis. These five loci increased the number of mtDNA haplotypes resolved from four with the PCR RFLP method to 37 (17, 6, 8 and 4 for Ia, Ib, IIa, and IIb haplotypes, respectively, plus 2 Herb-1 haplotypes). As with the PCR RFLP method, two main lineages, I and II were defined. Group I contained 25 mtDNA haplotypes that grouped broadly according to the Ia and Ib types and resolved several sub-clades amongst the global sample. Group II comprised two distinct clusters with four haplotypes corresponding to the RFLP type IIb and eight haplotypes resolved within type IIa. The 12-plex SSR assay revealed 90 multilocus genotypes providing accurate discrimination of dominant clonal lineages and other genetically diverse isolates. Some association of genetic diversity and geographic region of contemporary isolates was observed; US and Mexican isolates formed a loose grouping, distinct from isolates from Europe, South America and other regions. Diversity within clonal lineages was observed that varied according to the age of the clone. In combination, these fine-scale nuclear and maternally inherited mitochondrial markers enabled a greater level of discrimination among isolates than previously available and provided complementary perspectives on evolutionary questions relating to the diversity, phylogeography and the origins and spread of clonal lineages of <i>P</i>. <i>infestans</i>.</p></div

    Micro- and nanosystems for biology and medicine

    Get PDF
    The development of new tools and instruments for biomedical applications based on nano- (NEMS) or microelectromechanical systems technology (MEMS) are bridging the gap between the macro- and the nano-world. The well mastered microtechnique allows controlling many parameters of these instruments, which is essential for conducting reproducible and repeatable experiments in the life sciences. Examples are multifunctional scanning probe sensors for cell biology, an arthroscopic scanning force microscope for minimally invasive medical interventions and a nanopore sensor for single molecule experiments in biochemistry. This paper reviews some of the activities conducted in a fruitful interdisciplinary collaboration between physicists, engineers, biologists and physicians

    Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is 'no' - as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions

    Genome Analyses of an Aggressive and Invasive Lineage of the Irish Potato Famine Pathogen

    Get PDF
    Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemic

    Do temporal and spatial heterogeneity modulate biodiversity–functioning relationships in com-munities of methanotrophic bacteria?

    Get PDF
    Positive relationships between biodiversity functioning have been found in communities of plants but also of soil microbes. The beneficial effects of diversity are thought to be driven by niche partitioning among community members, which leads to more complete or more efficient community-level resource use through various mechanisms. An intriguing related question is whether environmentally more heterogeneous habitats provide a larger total niche space and support stronger diversity—functioning relationships because they harbor more species or allow species to partition the available niche space more efficiently. Here, we tested this hypothesis by assembling communities of 1, 2 or 4 methanotrophic isolates and exposing them to temporally (constant or diurnal temperature cycling) and structurally (one or two aggregate size classes) more heterogeneous conditions. In total, we incubated 396 microcosms for 41 days and found that more biodiverse communities consumed more methane (CH4) and tended to have a larger community size (higher pmoA copy numbers). Diurnal temperature cycling strongly reduced CH4 oxidation and growth, whereas soil aggregate composition and diversity had no detectable effect. Biodiversity effects varied greatly with the identity of the community members that were combined. With respect to community level CH4 consumption, strain interactions were positive or neutral but never negative, and could neither be explained by 14 structural and function traits we collected or by the observed competitive hierarchy among the strains. Overall, our results indicate that methanotrophic diversity promotes methanotrophic community functioning. The strains that performed best varied with environmental conditions, suggesting that a high biodiversity is important for maintaining methanotrophic functioning as environmental conditions fluctuate over time

    Experimental erosion of microbial diversity decreases soil CH4_4 consumption rates

    Get PDF
    Biodiversity‐ecosystem functioning (BEF) experiments have predominantly focused on communities of higher organisms, in particular plants, with comparably little known to date about the relevance of biodiversity for microbially driven biogeochemical processes. Methanotrophic bacteria play a key role in Earth's methane (CH4_{4}) cycle by removing atmospheric CH4_{4} and reducing emissions from methanogenesis in wetlands and landfills. Here, we used a dilution‐to‐extinction approach to simulate diversity loss in a methanotrophic landfill cover soil community. Replicate samples were diluted 101^{1}–107^{7}‐fold, preincubated under a high CH4_{4} atmosphere for microbial communities to recover to comparable size, and then incubated for 86 days at constant or diurnally cycling temperature. We hypothesize that (1) CH4_{4} consumption decreases as methanotrophic diversity is lost, and (2) this effect is more pronounced under variable temperatures. Net CH4_{4} consumption was determined by gas chromatography. Microbial community composition was determined by DNA extraction and sequencing of amplicons specific to methanotrophs and bacteria (pmoA and 16S gene fragments). The richness of operational taxonomic units (OTU) of methanotrophic and nonmethanotrophic bacteria decreased approximately linearly with log‐dilution. CH4_{4} consumption decreased with the number of OTUs lost, independent of community size. These effects were independent of temperature cycling. The diversity effects we found occured in relatively diverse communities, challenging the notion of high functional redundancy mediating high resistance to diversity erosion in natural microbial systems. The effects also resemble the ones for higher organisms, suggesting that BEF relationships are universal across taxa and spatial scales
    corecore