69 research outputs found
Developing staining protocols for visualization of tissue-engineering scaffolds using micro computed tomography in native wet state
Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy
Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites
The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage
Abstract
Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. This study evaluated the performance of culture-expanded human chondrocytes from ear (EC), nose (NC) and articular joint (AC), as well as bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells both in vitro and in vivo. All cells (≥ 3 donors per source) were culture-expanded, encapsulated in alginate and cultured for 5 weeks. Subsequently, constructs were implanted subcutaneously for 8 additional weeks. Before and after implantation, glycosaminoglycan (GAG) and collagen content were measured using biochemical assays. Mechanical properties were determined using stress-strain-indentation tests. Hypertrophic differentiation was evaluated with qRT-PCR and subsequent endochondral ossification with histology. ACs had higher chondrogenic potential in vitro than the other cell sources, as assessed by gene expression and GAG content (p < 0.001). However, after implantation, ACs did not further increase their matrix. In contrast, ECs and NCs continued producing matrix in vivo leading to higher GAG content (p < 0.001) and elastic modulus. For NC-constructs, matrix-deposition was associated with the elastic modulus (R² = 0.477, p = 0.039). Although all cells--except ACs--expressed markers for hypertrophic differentiation in vitro, there was no bone formed in vivo. Our work shows that cartilage formation and functionality depends on the cell source used. ACs possess the highest chondrogenic capacity in vitro, while ECs and NCs are most potent in vivo, making them attractive cell sources for cartilage repair
Biomechanical Characterisation of the Human Auricular Cartilages; Implications for Tissue Engineering
Life cycle assessment of bacterial cellulose production
Purpose
Bacterial cellulose (BC), obtained by fermentation, is an innovative and promising material with a broad spectrum of potential applications. Despite the increasing efforts towards its industrialization, a deeper understanding of the environmental impact related to the BC production process is still required. This work aimed at quantifying the environmental, health, and resource depletion impacts related to a production of BC.
Methods
An attributional life cycle assessment (LCA) was applied to a process design of production of BC, by static culture, following a cradle-to-gate approach. The LCA was modeled with GaBi Pro Software using the ReCiPe 2016 (H) methodology with environmental impact indicators at midpoint level. The functional unit was defined as 1 kg of BC (dry mass), in 138.8 kg of water.
Results
From the total used resources (38.9 ton/kg of BC), water is the main one (36.1 ton/kg of BC), most of which (98%) is returned to fresh waters after treatment. The production of raw materials consumed 17.8 ton of water/kg of BC, 13.8 ton/kg of BC of which was for the production of carton packaging, culture medium raw materials, and sodium hydroxide (for the washing of BC). The remaining consumed water was mainly for the fermentation (3.9 ton/kg) and downstream process (7.7 ton/kg). From the identified potential environmental impacts, the production of raw materials had the highest impact, mainly on Climate change, Fossil depletion, Human toxicity, non-cancer, and Terrestrial toxicity. The sodium dihydrogen phosphate production, used in the culture medium, showed the highest environmental impacts in Human toxicity, non-cancer and Terrestrial ecotoxicity, followed by corn syrup and carton production. The static culture fermentation and downstream process showed impact in Climate change and Fossil depletion.
Conclusions
Per se, the BC production process had a small contribution to the consumption of resources and environmental impact of the BC global life cycle.This study was supported by the Portuguese Foundation
for Science and Technology (FCT) within the scope of the strate gic funding of UIDB/04469/2020 and UIDB/00511/2020 units and
MultiBiorefinery project (SAICTPAC/0040/2015-POCI-01-0145-
FEDER-016403). This study was also supported by The Navigator
Company through the I&D no. 21874, “Inpactus-–Produtos e Tecno logias Inovadores a partir do Eucalipto”, funded through the European
Regional Development Fund (ERDF) and the Programa Operacional
Competitividade e Internacionalização (POCI) is greatly acknowl edged. The work by Belmira Neto was fnancially supported by Base
Funding—UIDB/00511/2020 of the Laboratory for Process Engineer ing, Environment, Biotechnology and Energy—LEPABE—funded by
national funds through the FCT/MCTES (PIDDAC).info:eu-repo/semantics/publishedVersio
Quantitative Evaluation of Mechanical Properties in Tissue-Engineered Auricular Cartilage
ISSN:1937-3368ISSN:1937-337
Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage
Tissue-engineering (TE) efforts for ear reconstruction often fail due to mechanical incompetency. It is therefore key for successful auricular cartilage (AUC) TE to ensure functional competency, that is, to mimic the mechanical properties of the native ear tissue. A review of past attempts to engineer AUC shows unsatisfactory functional outcomes with various cell-seeded biodegradable polymeric scaffolds in immunocompetent animal models. However, promising improvements to construct stability were reported with either mechanically reinforced scaffolds or novel two-stage implantation techniques. Nonetheless, quantitative mechanical evaluation of the constructs is usually overlooked, and such an evaluation of TE constructs alongside a benchmark of native AUC would allow real-time monitoring and improve functional outcomes of auricular TE strategies. Although quantitative mechanical evaluation techniques are readily available for cartilage, these techniques are designed to characterize the main functional components of hyaline and fibrous cartilage such as the collagen matrix or the glycosaminoglycan network, but they overlook the functional role of elastin, which is a major constituent of AUC. Hence, for monitoring AUC TE, novel evaluation techniques need to be designed. These should include a characterization of the specific composition and architecture of AUC, as well as mechanical evaluation of all functional components. Therefore, this article reviews the existing literature on AUC TE as well as cartilage mechanical evaluation and proposes recommendations for designing a mechanical evaluation protocol specific for AUC, and establishing a benchmark for native AUC to be used for quantitative evaluation of TE AUC
- …
