21,664 research outputs found

    Radial basis function approach in nuclear mass predictions

    Full text link
    The radial basis function (RBF) approach is applied in predicting nuclear masses for 8 widely used nuclear mass models, ranging from macroscopic-microscopic to microscopic types. A significantly improved accuracy in computing nuclear masses is obtained, and the corresponding rms deviations with respect to the known masses is reduced by up to 78%. Moreover, strong correlations are found between a target nucleus and the reference nuclei within about three unit in distance, which play critical roles in improving nuclear mass predictions. Based on the latest Weizs\"{a}cker-Skyrme mass model, the RBF approach can achieve an accuracy comparable with the extrapolation method used in atomic mass evaluation. In addition, the necessity of new high-precision experimental data to improve the mass predictions with the RBF approach is emphasized as well.Comment: 18 pages, 8 figure

    High-precision laser spectroscopy of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ (2,0), (3,0) and (4,0) bands

    Full text link
    High-precision two-photon Doppler-free frequency measurements have been performed on the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ fourth-positive system (2,0), (3,0), and (4,0) bands. Absolute frequencies of forty-three transitions, for rotational quantum numbers up to J=5J = 5, have been determined at an accuracy of 1.6×1031.6\times10^{-3} cm1^{-1}, using advanced techniques of two-color 2+1' resonance-enhanced multi-photon ionization, Sagnac interferometry, frequency-chirp analysis on the laser pulses, and correction for AC-Stark shifts. The accurate transition frequencies of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ system are of relevance for comparison with astronomical data in the search for possible drifts of fundamental constants in the early universe. The present accuracies in laboratory wavelengths of Δλ/λ=2×108\Delta\lambda/\lambda = 2 \times 10^{-8} may be considered exact for the purpose of such comparisons.Comment: 13 pages, 6 figures, The Journal of Chemical Physics (2015) accepte

    High-speed measurement of rotational anisotropy nonlinear optical harmonic generation using position sensitive detection

    Get PDF
    We present a method of performing high-speed rotational anisotropy nonlinear optical harmonic generation experiments at rotational frequencies of several hertz by projecting the harmonic light reflected at different angles from a sample onto a stationary position sensitive detector. The high rotational speed of the technique, 10310^3 to 10410^4 times larger than existing methods, permits precise measurements of the crystallographic and electronic symmetries of samples by averaging over low frequency laser power, beam pointing, and pulse width fluctuations. We demonstrate the sensitivity of our technique by resolving the bulk four-fold rotational symmetry of GaAs about its [001] axis using second harmonic generation

    Orientation-dependent deformation mechanisms of bcc niobium nanoparticles

    Full text link
    Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyze the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [110] compression, while it obeys the Hertzian contact model in [111] and [001] compressions. In plastic deformation regime, full dislocation gliding is dominated in [110] compression, while deformation twinning is prominent in [111] compression, and these two mechanisms coexist in [001] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviors of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.Comment: 21 pages, 11 figure

    Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus 120^{120}Sn

    Get PDF
    We propose a self-consistent quasi-particle random phase approximation (QRPA) plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to describe the width and the line shape of giant resonances in open-shell nuclei, in which the effect of superfluidity should be taken into account in both the ground state and the excited states. We apply the new model to the Gamow-Teller resonance in the superfluid nucleus 120^{120}Sn, including both the isoscalar spin-triplet and the isovector spin-singlet pairing interactions. The strength distribution in 120^{120}Sn is well reproduced and the underlying microscopic mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in detail.Comment: 32 pages, 11 figures, 4 table

    Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

    Full text link
    The paper is concerned with the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue space LqL^q with 2<q2<q\le\infty, we show the degenerate viscous lake equations possess a unique global solution and the solution converges to a corresponding weak solution of the inviscid lake equations. In the special case when the vorticity is in LL^\infty, an explicit convergence rate is obtained
    corecore