25 research outputs found
Nck adapter proteins: functional versatility in T cells
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation
Immune complex-induced haptokinesis in human non-classical monocytes
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.</jats:p
DataSheet_1_Immune complex-induced haptokinesis in human non-classical monocytes.docx
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.</p
Determination of Ethoxyquin in Feeds by Liquid Chromatography: Collaborative Study
Abstract
Ethoxyquin is a chemical antioxidant used in feeds, ingredients, fats, and oils. A liquid chromatographic (LC) method for determination of ethoxyquin was developed. The method involves acetonitrile extraction of the sample and isocratic Cis reversed-phase chromatography with ammonium acetate buffer-acetonitrile as mobile phase and fluorescence detection. A collaborative study of the determination of ethoxyquin in various meals and extruded pet foods was conducted by The lams Company Research Laboratory. Eleven laboratories analyzed 16 samples (including 2 blind duplicates) consisting of 7 meat meals and 9 extruded pet foods. Sample means ranged from 0.25 to 289 ppm. Repeatability standard deviations ranged from 0.08 to 3.2 ppm, and repeatability relative standard deviations ranged from 4.5 to 32%. Reproducibility standard deviations ranged from 0.12 to 13 ppm, and reproducibility relative standard deviations ranged from 4.5 to 55%. The LC method for determination of ethoxyquin in feeds has been adopted first action by AOAC INTERNATIONAL.</jats:p
Determination of Vitamins A (Retinol) and E (alpha-Tocopherol) in Foods by Liquid Chromatography: Collaborative Study
Abstract
A collaborative study was conducted for the determination of vitamins A and E. Existing AOAC liquid chromatographic (LC) methods are suited for specific vitamins A and E analytical applications. This method differs from existing methods in that it can be used to assay samples in all 9 sectors of the food matrix. Standards and test samples are saponified in basic ethanol–water solution, neutralized, and diluted, converting fats to fatty acids and retinol esters and tocopherol esters to retinol and tocopherol, respectively. Retinol and alpha-tocopherol are quantitated on separate LC systems, using UV detection at 313 or 328 nm for retinol, and fluorescence detection (excitation 290 nm, emission 330 nm) for alpha-tocopherol. Vitamin concentrations are calculated by comparison of the peak heights or peak areas of vitamins in test samples with those of standards.</jats:p
