801 research outputs found
Hadronic and radiative three-body decays of J/psi involving the scalars f0(1370), f0(1500) and f0(1710)
We study the role of the scalar resonances f0(1370), f0(1500) and f0(1710) in
the strong and radiative three-body decays of J/psi with J/psi to V + P P
(gamma gamma) and J/psi to gamma + P P (V V), where P (V) denotes a
pseudoscalar (vector) meson. We assume that the scalars result from a
glueball-quarkonium mixing scheme while the dynamics of the transition process
is described in an effective chiral Lagrangian approach. Present data on J/psi
to V + P P are well reproduced, predictions for the radiative processes serve
as further tests of this scenario.Comment: 15 page
Subcutaneous Fat Necrosis Following Induced Hypothermia
A necrose gorda do tecido celular subcutâneo do recém-nascido está associada a asfixia neonatal, aspiração de mecónio, convulsões ou hipotermia. A hipercalcemia é a complicação mais frequente, podendo em alguns casos ser grave e exigir terapêutica específica. Relata-se o caso de um recém-nascido de cesariana emergente por sofrimento fetal, tendo sido submetido a protocolo de hipotermia induzida. Foi diagnosticado com necrose gorda do recém-nascido ao 11º dia de internamento. No 23º dia identificou-se hipercalcemia, tendo iniciado terapêutica com pamidronato, com consequente diminuição gradual da calcemia. Sublinha-se a necessidade da identificação rápida de necrose gorda, possibilitando antecipar a hipercalcemia e iniciar terapêutica precoce
Simplifying instanton corrections to N=4 SYM correlators
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited
Solving the 3D Ising Model with the Conformal Bootstrap
We study the constraints of crossing symmetry and unitarity in general 3D
Conformal Field Theories. In doing so we derive new results for conformal
blocks appearing in four-point functions of scalars and present an efficient
method for their computation in arbitrary space-time dimension. Comparing the
resulting bounds on operator dimensions and OPE coefficients in 3D to known
results, we find that the 3D Ising model lies at a corner point on the boundary
of the allowed parameter space. We also derive general upper bounds on the
dimensions of higher spin operators, relevant in the context of theories with
weakly broken higher spin symmetries.Comment: 32 pages, 11 figures; v2: refs added, small changes in Section 5.3,
Fig. 7 replaced; v3: ref added, fits redone in Section 5.
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Holographic GB gravity in arbitrary dimensions
We study the properties of the holographic CFT dual to Gauss-Bonnet gravity
in general dimensions. We establish the AdS/CFT dictionary and in
particular relate the couplings of the gravitational theory to the universal
couplings arising in correlators of the stress tensor of the dual CFT. This
allows us to examine constraints on the gravitational couplings by demanding
consistency of the CFT. In particular, one can demand positive energy fluxes in
scattering processes or the causal propagation of fluctuations. We also examine
the holographic hydrodynamics, commenting on the shear viscosity as well as the
relaxation time. The latter allows us to consider causality constraints arising
from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection
3.3 and new appendix B on conformal tensor fields. Added comments on the
relation between the central charge appearing in the two-point function and
the "central charge" characterizing the entropy density in the discussion.
References adde
Differential equations for multi-loop integrals and two-dimensional kinematics
In this paper we consider multi-loop integrals appearing in MHV scattering
amplitudes of planar N=4 SYM. Through particular differential operators which
reduce the loop order by one, we present explicit equations for the two-loop
eight-point finite diagrams which relate them to massive hexagons. After the
reduction to two-dimensional kinematics, we solve them using symbol technology.
The terms invisible to the symbols are found through boundary conditions coming
from double soft limits. These equations are valid at all-loop order for double
pentaladders and allow to solve iteratively loop integrals given lower-loop
information. Comments are made about multi-leg and multi-loop integrals which
can appear in this special kinematics. The main motivation of this
investigation is to get a deeper understanding of these tools in this
configuration, as well as for their application in general four-dimensional
kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure
Universality and exactness of Schrodinger geometries in string and M-theory
We propose an organizing principle for classifying and constructing
Schrodinger-invariant solutions within string theory and M-theory, based on the
idea that such solutions represent nonlinear completions of linearized vector
and graviton Kaluza-Klein excitations of AdS compactifications. A crucial
simplification, derived from the symmetry of AdS, is that the nonlinearities
appear only quadratically. Accordingly, every AdS vacuum admits infinite
families of Schrodinger deformations parameterized by the dynamical exponent z.
We exhibit the ease of finding these solutions by presenting three new
constructions: two from M5 branes, both wrapped and extended, and one from the
D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a
CFT by a null vector operator can lead to nonzero beta-functions for spin-2
operators; however, symmetry restricts them to be at most quadratic in
couplings. This point of view also allows us to easily prove nonrenormalization
theorems: for any Sch(z) solution of two-derivative supergravity constructed in
the above manner, z is uncorrected to all orders in higher derivative
corrections if the deforming KK mode lies in a short multiplet of an AdS
supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with
4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight
change in interpretation in section 2.3, new Schrodinger and Lifshitz
solutions included; v3, clarifications in sections 2 and 3 regarding
existence of solutions and multi-trace operator
Mellin Amplitudes for Dual Conformal Integrals
Motivated by recent work on the utility of Mellin space for representing
conformal correlators in /CFT, we study its suitability for representing
dual conformal integrals of the type which appear in perturbative scattering
amplitudes in super-Yang-Mills theory. We discuss Feynman-like rules for
writing Mellin amplitudes for a large class of integrals in any dimension, and
find explicit representations for several familiar toy integrals. However we
show that the power of Mellin space is that it provides simple representations
even for fully massive integrals, which except for the single case of the
4-mass box have not yet been computed by any available technology. Mellin space
is also useful for exhibiting differential relations between various multi-loop
integrals, and we show that certain higher-loop integrals may be written as
integral operators acting on the fully massive scalar -gon in
dimensions, whose Mellin amplitude is exactly 1. Our chief example is a very
simple formula expressing the 6-mass double box as a single integral of the
6-mass scalar hexagon in 6 dimensions.Comment: 29+7 page
- …
