5,133 research outputs found
Oxidation and protection of fiberglass-epoxy composite masts for photovoltaic arrays in the low Earth orbital environment
Fiberglass-epoxy composites are considered for use as structural members for the mast of the space station solar array panel. The low Earth orbital environment in which space station is to operate is composed mainly of atomic oxygen, which has been shown to cause erosion of many organic materials and some metals. Ground based testing in a plasma asher was performed to determine the extent of degradation of fiberglass-epoxy composites when exposed to a simulated atomic oxygen environment. During exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. Several methods of protecting the composite were evaluated in an atomic oxygen environment and with thermal cycling and flexing. The protection techniques evaluated to date include an aluminum braid covering, an indium-tin eutectic and a silicone based paint. The open aluminum braid offered little protection while the CV-1144 coating offered some initial protection against atomic oxygen, but appears to develop cracks which accelerate degradation when flexed. Coatings such as the In-Sn eutectic may provide adequate protection by containing the glass fibers even though mass loss still occurs
Cost-Effective Water Quality Management Strategies in Central and Eastern Europe
Many countries in Central and Eastern Europe will be formulating new environmental regulations within the next few years. Among the many topics which these are likely to address is the development of control policies for waste-water dischargers, including municipal sewage treatment plants. In Western Europe and North America, standards have relied heavily upon so-called "best available technology" control policies, which require dischargers to use treatment processes that reduce emissions of BOD, phosphorus, and nitrogen as much as is technically feasible. However, these technologies are often very expensive. Given the state of Central and Eastern European economies, less expensive methods to improve water quality should be seriously considered.
In this paper, we investigate control policies, alternative sewage treatment possibilities, water quality models, and optimization methods required to identify least-cost strategies to improve the region's ambient water quality. We survey the costs and technical capacities of a variety of treatment techniques, ranging from simple primary or mechanical treatment to advanced technology to remove nutrients. We also survey existing water quality models and show how they can be adapted to the policy analysis problem. Finally, we characterize a number of potential policies in terms that are amenable to analysis of their costs and ambient quality impacts. Focussing on municipal waste-water treatment plants and water quality in rivers and streams, we show how these techniques can be integrated and applied. We conclude with an empirical example based on the Nitra, a small, heavily contaminated river in Slovakia
The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces
Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture
Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum
Every completely positive map G that commutes which the Hamiltonian time
evolution is an integral or sum over (densely defined) CP-maps G_\sigma where
\sigma is the energy that is transferred to or taken from the environment. If
the spectrum is non-degenerated each G_\sigma is a dephasing channel followed
by an energy shift. The dephasing is given by the Hadamard product of the
density operator with a (formally defined) positive operator. The Kraus
operator of the energy shift is a partial isometry which defines a translation
on R with respect to a non-translation-invariant measure.
As an example, I calculate this decomposition explicitly for the rotation
invariant gaussian channel on a single mode.
I address the question under what conditions a covariant channel destroys
superpositions between mutually orthogonal states on the same orbit. For
channels which allow mutually orthogonal output states on the same orbit, a
lower bound on the quantum capacity is derived using the Fourier transform of
the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly
specified. Presentation more detailed. Implementing the shift after the
dephasing is sometimes more convenien
An automated and versatile ultra-low temperature SQUID magnetometer
We present the design and construction of a SQUID-based magnetometer for
operation down to temperatures T = 10 mK, while retaining the compatibility
with the sample holders typically used in commercial SQUID magnetometers. The
system is based on a dc-SQUID coupled to a second-order gradiometer. The sample
is placed inside the plastic mixing chamber of a dilution refrigerator and is
thermalized directly by the 3He flow. The movement though the pickup coils is
obtained by lifting the whole dilution refrigerator insert. A home-developed
software provides full automation and an easy user interface.Comment: RevTex, 10 pages, 10 eps figures. High-resolution figures available
upon reques
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since
10 years as a tool for vibrational spectroscopy. This method has turned out
especially useful in case of large molecules that contain a M\"ossbauer active
metal center. Recent applications to iron-sulfur proteins, to iron(II) spin
crossover complexes and to tin-DNA complexes are discussed. Special emphasis is
given to the combination of nuclear inelastic scattering and density functional
calculations
Tuning Magnetic Avalanches in Mn12-ac
Using micron-sized Hall sensor arrays to obtain time-resolved measurements of
the local magnetization, we report a systematic study in the molecular magnet
Mn-acetate of magnetic avalanches controllably triggered in different
fixed external magnetic fields and for different values of the initial
magnetization. The speeds of propagation of the spin-reversal fronts are in
good overall agreement with the theory of magnetic deflagration of Garanin and
Chudnovsky \cite{Garanin}.Comment: 8 pages, 7 figures; discussion expanded and revise
Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
UNLABELLED: Gamma oscillations (30-120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channel rhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo The results suggest the presence of a single gamma rhythm generator with a frequency range of 65-75 Hz at 32 °C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal-interneuron circuit mechanism. SIGNIFICANCE STATEMENT: This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region.J.L.B. is support by a Biotechnology and Biological Sciences Research Council CASE Studentship in collaboration with Eli Lilly and Company, and P.R.F.M. is supported by a CAPES Science without Borders Cambridge Scholarship.This is the final version of the article. It first appeared from the Society for Neuroscience via http://dx.doi.org/10.1523/JNEUROSCI.3150-15.201
- …
