917 research outputs found
The local power of the gradient test
The asymptotic expansion of the distribution of the gradient test statistic
is derived for a composite hypothesis under a sequence of Pitman alternative
hypotheses converging to the null hypothesis at rate , being the
sample size. Comparisons of the local powers of the gradient, likelihood ratio,
Wald and score tests reveal no uniform superiority property. The power
performance of all four criteria in one-parameter exponential family is
examined.Comment: To appear in the Annals of the Institute of Statistical Mathematics,
this http://www.ism.ac.jp/editsec/aism-e.htm
Recommended from our members
Heme oxygenase-1 protects against Alzheimer’s amyloid-β1-42 induced toxicity via carbon monoxide production
Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells
stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological
induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been
recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent
Genome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom
Diatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast structure which complicates the prediction of subcellular protein localization. Based on previous work we implemented a pipeline that exploits a series of bioinformatics tools to predict protein localization. The manually curated reconstructed metabolic network iLB1027_lipid accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed across six compartments. To constrain the genome-scale model, we determined the organism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fourier transform infrared spectrometry. Our simulations indicate the presence of a yet unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents generated by photosynthesis to the mitochondria. The model reflects the known biochemical composition of P. tricornutum in defined culture conditions and enables metabolic engineering strategies to improve the use of P. tricornutum for biotechnological applications
A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations
Exposure to carbon monoxide (CO) causes early afterdepolarization arrhythmias. Previous studies in rats indicated arrhythmias arose due to augmentation of the late Na+ current. The purpose of the present study was to examine the basis of CO-induced arrhythmias in guinea pig myocytes in which action potentials more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes and also from HEK293 cells expressing wild-type or a C723S mutant form of Kv11.1 (ERG). We also monitored formation of peroxynitrite (ONOO-) in HEK293 cells fluorimetrically. CO, applied as the CO releasing molecule, CORM-2, prolonged action potentials and induced early after-depolarizations (EADs) in guinea pig myocytes. In HEK293 cells CO inhibited wild-type but not C723S mutant Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors or inhibition of nitric oxide formation. CO also raised ONOO- levels, an effect reversed by the ONOO- scavenger, FeTPPS which also prevented CO inhibition of Kv11.1 currents, and abolished the effects of CO on Kv11.1 tail currents and action potentials in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via ONOO--mediated inhibition of Kv11.1 K+ channel
Anti-Allergic Cromones Inhibit Histamine and Eicosanoid Release from Activated Human and Murine Mast Cells by Releasing Annexin A1
PMCID: PMC3601088This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure
We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure
Regulation of the T-type Ca²⁺ channel Cav3.2 by hydrogen sulfide: Emerging controversies concerning the role of H₂S in nociception
Ion channels represent a large and growing family of target proteins regulated by gasotransmitters such as nitric oxide, carbon monoxide and, as described more recently, hydrogen sulfide. Indeed, many of the biological actions of these gases can be accounted for by their ability to modulate ion channel activity. Here, we report recent evidence that H₂S is a modulator of low voltage-activated T-type Ca²⁺ channels, and discriminates between the different subtypes of T-type Ca²⁺ channel in that it selectively modulates Cav3.2, whilst Cav3.1 and Cav3.3 are unaffected. At high concentrations, H₂S augments Cav3.2 currents, an observation which has led to the suggestion that H₂S exerts its pro-nociceptive effects via this channel, since Cav3.2 plays a central role in sensory nerve excitability. However, at more physiological concentrations, H₂S is seen to inhibit Cav3.2. This inhibitory action requires the presence of the redox-sensitive, extracellular region of the channel which is responsible for tonic metal ion binding and which particularly distinguishes this channel isoform from Cav3.1 and 3.3. Further studies indicate that H₂S may act in a novel manner to alter channel activity by potentiating the zinc sensitivity/affinity of this binding site. This review discusses the different reports of H₂S modulation of T-type Ca²⁺ channels, and how such varying effects may impact on nociception given the role of this channel in sensory activity. This subject remains controversial, and future studies are required before the impact of T-type Ca²⁺ channel modulation by H₂S might be exploited as a novel approach to pain management
Introduction: Repatriation and ritual, repatriation as ritual
This special section of Museum Worlds explores the entire process of repatriation as a set of rituals enacted by claimants and museum staff: a set of highlighted performances enacting multiple sets of cosmological beliefs, symbolic systems, and political structures. Some of the rituals of repatriation occur within the space of Indigenous ceremonies; others happen within the museum spaces of collections storage and the boardroom; others, such as handover ceremonies, are coproduced and culturally hybrid. From the often obsessive bureaucracy associated with repatriation claims to the affective moment of handover, repatriation articulates a moral landscape where memory, responsibility, guilt, identity, sanctity, place, and ownership are given a ritual form. Theory about ritual is used here to situate the articles in this section, which together form a cross-cultural examination of ritual meaning and form across repatriation processes
Recommended from our members
Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K+ channel Kv1.5
The voltage-gated K+ channel plays key roles in the vasculature and in atrial excitability, and contributes to apoptosis in various tissues. In this study, we have explored its regulation by carbon monoxide (CO), a product of the cytoprotective heme oxygenase enzymes, and a recognized toxin. CO inhibited recombinant Kv1.5 expressed in HEK293 cells in a concentration-dependent manner which involved multiple signalling pathways. CO inhibition was partially reversed by superoxide dismutase mimetics, and by suppression of mitochondrial reactive oxygen species. CO also elevated intracellular nitric oxide (NO) levels. Prevention of NO formation also partially reversed CO inhibition of Kv1.5, as did inhibition of soluble guanylyl cyclase. CO also elevated intracellular peroxynitrite levels, and a peroxynitrite scavenger markedly attenuated the ability of CO to inhibit Kv1.5. CO caused nitrosylation of Kv1.5, an effect which was also observed in C331A and C346A mutant forms of the channel, which had previously been suggested as nitrosylation sites within Kv1.5. Augmentation of Kv1.5 via exposure to hydrogen peroxide was fully reversed by CO. Native Kv1.5 recorded in HL-1 murine atrial cells was also inhibited by CO. Action potentials recorded in HL-1 cells were increased in amplitude and duration by CO, an effect mimicked and occluded by pharmacological inhibition of Kv1.5. Our data indicate that Kv1.5 is a target for modulation by CO via multiple mechanisms. This regulation has important implications for diverse cellular functions, including excitability, contractility and apoptosis
- …
