3,576 research outputs found
Low speed aerodynamic characteristics of an 0.075-scale F-15 airplane model at high angles of attack and sideslip
An 0.075 scale model representative of the F-15 airplane was tested in the Ames 12 foot pressure wind tunnel at a Mach number of 0.16 to determine static longitudinal and lateral directional characteristics at spin attitudes for Reynolds numbers from 1.48 to 16.4 million per meter (0.45 to 5.0 million per foot). Angles of attack ranged from 0 to +90 deg and from -40 deg to -80 deg while angles of sideslip were varied from -20 deg to +30 deg. Data were obtained for nacelle inlet ramp angles of 0 to 11 deg with the left and right stabilators deflected 0, -25 deg, and differentially 5 deg and -5 deg. The normal pointed nose and two alternate nose shapes were also tested along with several configurations of external stores. Analysis of the results indicate that at higher Reynolds numbers there is a slightly greater tendency to spin inverted than at lower Reynolds numbers. Use of a hemispherical nose in place of the normal pointed nose provided an over correction in simulating yawing moment effects at high Reynolds numbers
Two-photon- photoluminescence excitation spectroscopy of single quantum-dots
We present experimental and theoretical study of single semiconductor quantum
dots excited by two non-degenerate, resonantly tuned variably polarized lasers.
The first laser is tuned to excitonic resonances. Depending on its polarization
it photogenerates a coherent single exciton state. The second laser is tuned to
biexciton resonances. By scanning the energy of the second laser for various
polarizations of the two lasers, while monitoring the emission from the
biexciton and exciton spectral lines, we map the biexciton photoluminescence
excitation spectra. The resonances rich spectra of the second photon absorption
are analyzed and fully understood in terms of a many carrier theoretical model
which takes into account the direct and exchange Coulomb interactions between
the quantum confined carriers.Comment: Accepted for publication in PR
Self-tuned quantum dot gain in photonic crystal lasers
We demonstrate that very few (1 to 3) quantum dots as a gain medium are
sufficient to realize a photonic crystal laser based on a high-quality
nanocavity. Photon correlation measurements show a transition from a thermal to
a coherent light state proving that lasing action occurs at ultra-low
thresholds. Observation of lasing is unexpected since the cavity mode is in
general not resonant with the discrete quantum dot states and emission at those
frequencies is suppressed. In this situation, the quasi-continuous quantum dot
states become crucial since they provide an energy-transfer channel into the
lasing mode, effectively leading to a self-tuned resonance for the gain medium.Comment: 4 pages, 4 figures, submitted to Phys. Re
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
Laser cooling of a nanomechanical resonator mode to its quantum ground state
We show that it is possible to cool a nanomechanical resonator mode to its
ground state. The proposed technique is based on resonant laser excitation of a
phonon sideband of an embedded quantum dot. The strength of the sideband
coupling is determined directly by the difference between the electron-phonon
couplings of the initial and final states of the quantum dot optical
transition. Possible applications of the technique we describe include
generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex
Radiative cascade from quantum dot metastable spin-blockaded biexciton
We detect a novel radiative cascade from a neutral semiconductor quantum dot.
The cascade initiates from a metastable biexciton state in which the holes form
a spin-triplet configuration, Pauli-blockaded from relaxation to the
spin-singlet ground state. The triplet biexciton has two photon-phonon-photon
decay paths. Unlike in the singlet-ground state biexciton radiative cascade, in
which the two photons are co-linearly polarized, in the triplet biexciton
cascade they are crosslinearly polarized. We measured the two-photon
polarization density matrix and show that the phonon emitted when the
intermediate exciton relaxes from excited to ground state, preserves the
exciton's spin. The phonon, thus, does not carry with it any which-path
information other than its energy. Nevertheless, entanglement distillation by
spectral filtering was found to be rather ineffective for this cascade. This
deficiency results from the opposite sign of the anisotropic electron-hole
exchange interaction in the excited exciton relative to that in the ground
exciton.Comment: 6 pages, 4 figure
Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes
We study two types of axially symmetric, stationary and asymptotically flat
spacetimes using highly accurate numerical methods. The one type contains a
black hole surrounded by a perfect fluid ring and the other a rigidly rotating
disc of dust surrounded by such a ring. Both types of spacetime are regular
everywhere (outside of the horizon in the case of the black hole) and fulfil
the requirements of the positive energy theorem. However, it is shown that both
the black hole and the disc can have negative Komar mass. Furthermore, there
exists a continuous transition from discs to black holes even when their Komar
masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made
(including title) to coincide with published versio
Frequency control of photonic crystal membrane resonators by mono-layer deposition
We study the response of GaAs photonic crystal membrane resonators to thin
film deposition. Slow spectral shifts of the cavity mode of several nanometers
are observed at low temperatures, caused by cryo-gettering of background
molecules. Heating the membrane resets the drift and shielding will prevent
drift altogether. In order to explore the drift as a tool to detect surface
layers, or to intentionally shift the cavity resonance frequency, we studied
the effect of self-assembled monolayers of polypeptide molecules attached to
the membranes. The 2 nm thick monolayers lead to a discrete step in the
resonance frequency and partially passivate the surface.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
- …
