1,485 research outputs found
The Impact of Insurance and a Usual Source of Care on Emergency Department Use in the United States
Background. Finding a usual source of care (USC) is difficult for certain populations. This analysis determines how insurance type and having a USC affect the settings in which patients seek care. Methods. In this cross-sectional study of the 2000–2011 Medical Expenditure Panel Surveys, we assessed the percentage of low-income persons with half or more of their ambulatory visits to the emergency department (ED). Respondents were stratified based on insurance type and presence of a USC. Results. In 2011, among Medicaid enrollees without USCs, 21.6% had half or more of their ambulatory visits to EDs compared to 8.1% for those with USCs. Among the uninsured without USCs, 24.1% went to an ED for half or more of their ambulatory visits compared to 8.8% for those with USCs in 2011. Among the privately insured without USCs, 7.8% went to an ED for half or more of their ambulatory visits compared to 5.0% for those with USCs in 2011. These differences remained in multivariate analyses. Conclusions. Those who lack USCs, particularly the uninsured and Medicaid enrollees, are more likely to rely on EDs
Electromagnetic Fields of Slowly Rotating Magnetized Gravastars
We study the dipolar magnetic field configuration and present solutions of
Maxwell equations in the internal background spacetime of a a slowly rotating
gravastar. The shell of gravastar where magnetic field penetrated is modeled as
sphere consisting of perfect highly magnetized fluid with infinite
conductivity. Dipolar magnetic field of the gravastar is produced by a circular
current loop symmetrically placed at radius at the equatorial plane.Comment: 5 pages, 2 figures, accepted for publication to Mod. Phys. Lett.
General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star. I. Formulation of the equations
We present analytic solutions of Maxwell equations in the internal and
external background spacetime of a slowly rotating magnetized neutron star. The
star is considered isolated and in vacuum, with a dipolar magnetic field not
aligned with the axis of rotation. With respect to a flat spacetime solution,
general relativity introduces corrections related both to the monopolar and the
dipolar parts of the gravitational field. In particular, we show that in the
case of infinite electrical conductivity general relativistic corrections due
to the dragging of reference frames are present, but only in the expression for
the electric field. In the case of finite electrical conductivity, however,
corrections due both to the spacetime curvature and to the dragging of
reference frames are shown to be present in the induction equation. These
corrections could be relevant for the evolution of the magnetic fields of
pulsars and magnetars. The solutions found, while obtained through some
simplifying assumption, reflect a rather general physical configuration and
could therefore be used in a variety of astrophysical situations.Comment: A few typos corrected; matches the versions in MNRA
On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system
In this paper we explore the consequences of the recent determination of the
mass m=(8.7 +/- 0.8)M_Sun of Cygnus X-1, obtained from the Quasi-Periodic
Oscillation (QPO)-photon index correlation scaling, on the orbital and physical
properties of the binary system HDE 226868/Cygnus X-1. By using such a result
and the latest spectroscopic optical data of the HDE 226868 supergiant star we
get M=(24 +/- 5)M_Sun for its mass. It turns out that deviations from the third
Kepler law significant at more than 1-sigma level would occur if the
inclination i of the system's orbital plane to the plane of the sky falls
outside the range 41-56 deg: such deviations cannot be due to the first
post-Newtonian (1PN) correction to the orbital period because of its smallness;
interpreted in the framework of the Newtonian theory of gravitation as due to
the stellar quadrupole mass moment Q, they are unphysical because Q would take
unreasonably large values. By conservatively assuming that the third Kepler law
is an adequate model for the orbital period we obtain i=(48 +/- 7) deg which
yields for the relative semimajor axis a=(42 +/- 9)R_Sun. Our estimate for the
Roche's lobe of HDE 226868 is r_M = (21 +/- 6)R_Sun.Comment: Latex2e, 7 pages, 1 table, 4 figures. To appear in ApSS (Astrophysics
and Space Science
Implications of nonlinearity for spherically symmetric accretion
We subject the steady solutions of a spherically symmetric accretion flow to
a time-dependent radial perturbation. The equation of the perturbation includes
nonlinearity up to any arbitrary order, and bears a form that is very similar
to the metric equation of an analogue acoustic black hole. Casting the
perturbation as a standing wave on subsonic solutions, and maintaining
nonlinearity in it up to the second order, we get the time-dependence of the
perturbation in the form of a Li\'enard system. A dynamical systems analysis of
the Li\'enard system reveals a saddle point in real time, with the implication
that instabilities will develop in the accreting system when the perturbation
is extended into the nonlinear regime. The instability of initial subsonic
states also adversely affects the temporal evolution of the flow towards a
final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous
version. Three figures and a new section (Sec. VI) adde
Perturbations on steady spherical accretion in Schwarzschild geometry
The stationary background flow in the spherically symmetric infall of a
compressible fluid, coupled to the space-time defined by the static
Schwarzschild metric, has been subjected to linearized perturbations. The
perturbative procedure is based on the continuity condition and it shows that
the coupling of the flow with the geometry of space-time brings about greater
stability for the flow, to the extent that the amplitude of the perturbation,
treated as a standing wave, decays in time, as opposed to the amplitude
remaining constant in the Newtonian limit. In qualitative terms this situation
simulates the effect of a dissipative mechanism in the classical Bondi
accretion flow, defined in the Newtonian construct of space and time. As a
result of this approach it becomes impossible to define an acoustic metric for
a conserved spherically symmetric flow, described within the framework of
Schwarzschild geometry. In keeping with this view, the perturbation, considered
separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur
A Toy Model for Blandford-Znajek Mechanism
A toy model for the Blandford-Znajek mechanism is investigated: a Kerr black
hole with a toroidal electric current residing in a thin disk around the black
hole. The toroidal electric current generates a poloidal magnetic field
threading the black hole and disk. Due to the interaction of the magnetic field
with remote charged particles, the rotation of the black hole and disk induces
an electromotive force, which can power an astrophysical load at remote
distance. The power of the black hole and disk is calculated. It is found that,
for a wide range of parameters specifying the rotation of the black hole and
the distribution of the electric current in the disk, the power of the disk
exceeds the power of the black hole. The torque provided by the black hole and
disk is also calculated. The torque of the disk is comparable to the torque of
the black hole. As the disk loses its angular momentum, the mass of the disk
gradually drifts towards the black hole and gets accreted. Ultimately the power
comes from the gravitational binding energy between the disk and the black
hole, as in the standard theory of accretion disk, instead of the rotational
energy of the black hole. This suggests that the Blandford-Znajek mechanism may
be less efficient in extracting energy from a rotating black hole with a thin
disk. The limitations of our simple model and possible improvements deserved
for future work are also discussed.Comment: 16 pages, 4 figures. Accepted for publication in Physical Review
Warp propagation in astrophysical discs
Astrophysical discs are often warped, that is, their orbital planes change
with radius. This occurs whenever there is a non-axisymmetric force acting on
the disc, for example the Lense-Thirring precession induced by a misaligned
spinning black hole, or the gravitational pull of a misaligned companion. Such
misalignments appear to be generic in astrophysics. The wide range of systems
that can harbour warped discs - protostars, X-ray binaries, tidal disruption
events, quasars and others - allows for a rich variety in the disc's response.
Here we review the basic physics of warped discs and its implications.Comment: To be published in Astrophysical Black Holes by Haardt et al.,
Lecture Notes in Physics, Springer 2015. 19 pages, 2 figure
New homogeneous iron abundances of double-mode Cepheids from high-resolution echelle spectroscopy
Aims: We define the relationship between the double-mode pulsation of
Cepheids and metallicity in a more accurate way, determine the empirical
metallicities of double-mode Cepheids from homogeneous, high-resolution
spectroscopic data, and study of the period-ratio -- metallicity dependence.
Methods: The high S/N echelle spectra obtained with the FEROS spectrograph were
analyzed using a self-developed IRAF script, and the iron abundances were
determined by comparing with synthetic spectra assuming LTE. Results: Accurate
[Fe/H] values of 17 galactic beat Cepheids were determined. All these stars
have solar or slightly subsolar metallicity. Their period ratio P1/P0 shows
strong correlation with their derived [Fe/H] values. The corresponding period
ratio -- metallicity relation has been evaluated.Comment: 10 pages, 7 figures, accepted in A&
- …
