2,514 research outputs found
Selective readout and back-action reduction for wideband acoustic gravitational wave detectors
We present the concept of selective readout for broadband resonant mass
gravitational wave detectors. This detection scheme is capable of specifically
selecting the signal from the contributions of the vibrational modes sensitive
to the gravitational waves, and efficiently rejecting the contribution from non
gravitationally sensitive modes. Moreover this readout, applied to a dual
detector, is capable to give an effective reduction of the back-action noise
within the frequency band of interest. The overall effect is a significant
enhancement in the predicted sensitivity, evaluated at the standard quantum
limit for a dual torus detector. A molybdenum detector, 1 m in diameter and
equipped with a wide area selective readout, would reach spectral strain
sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure
High-sensitivity optical monitoring of a micro-mechanical resonator with a quantum-limited optomechanical sensor
We experimentally demonstrate the high-sensitivity optical monitoring of a
micro-mechanical resonator and its cooling by active control. Coating a
low-loss mirror upon the resonator, we have built an optomechanical sensor
based on a very high-finesse cavity (30000). We have measured the thermal noise
of the resonator with a quantum-limited sensitivity at the 10^-19 m/rootHz
level, and cooled the resonator down to 5K by a cold-damping technique.
Applications of our setup range from quantum optics experiments to the
experimental demonstration of the quantum ground state of a macroscopic
mechanical resonator.Comment: 4 pages, 5 figure
Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity
We consider a Fabry-Perot cavity made by two moving mirrors and driven by an
intense classical laser field. We show that stationary entanglement between two
vibrational modes of the mirrors, with effective mass of the order of
micrograms, can be generated by means of radiation pressure. The resulting
entanglement is however quite fragile with respect to temperature.Comment: 15 pages, 3 figure
A micropillar for cavity optomechanics
We present a new micromechanical resonator designed for cavity optomechanics.
We have used a micropillar geometry to obtain a high-frequency mechanical
resonance with a low effective mass and a very high quality factor. We have
coated a 60-m diameter low-loss dielectric mirror on top of the pillar and
are planning to use this micromirror as part of a high-finesse Fabry-Perot
cavity, to laser cool the resonator down to its quantum ground state and to
monitor its quantum position fluctuations by quantum-limited optical
interferometry
Thermal and back-action noises in dual-sphere gravitational-waves detectors
We study the sensitivity limits of a broadband gravitational-waves detector
based on dual resonators such as nested spheres. We determine both the thermal
and back-action noises when the resonators displacements are read-out with an
optomechanical sensor. We analyze the contributions of all mechanical modes,
using a new method to deal with the force-displacement transfer functions in
the intermediate frequency domain between the two gravitational-waves sensitive
modes associated with each resonator. This method gives an accurate estimate of
the mechanical response, together with an evaluation of the estimate error. We
show that very high sensitivities can be reached on a wide frequency band for
realistic parameters in the case of a dual-sphere detector.Comment: 10 pages, 7 figure
Creating and Verifying a Quantum Superposition in a Micro-optomechanical System
Micro-optomechanical systems are central to a number of recent proposals for
realizing quantum mechanical effects in relatively massive systems. Here we
focus on a particular class of experiments which aim to demonstrate massive
quantum superpositions, although the obtained results should be generalizable
to similar experiments. We analyze in detail the effects of finite temperature
on the interpretation of the experiment, and obtain a lower bound on the degree
of non-classicality of the cantilever. Although it is possible to measure the
quantum decoherence time when starting from finite temperature, an unambiguous
demonstration of a quantum superposition requires the mechanical resonator to
be in or near the ground state. This can be achieved by optical cooling of the
fundamental mode, which also provides a method to measure the mean phonon
number in that mode. We also calculate the rate of environmentally induced
decoherence and estimate the timescale for gravitational collapse mechanisms as
proposed by Penrose and Diosi. In view of recent experimental advances,
practical considerations for the realization of the described experiment are
discussed.Comment: 19 pages, 8 figures, published in New J. Phys. 10 095020 (2008);
minor revisions to improve clarity; fixed possibly corrupted figure
Polarization squeezing with cold atoms
We study the interaction of a nearly resonant linearly polarized laser beam
with a cloud of cold cesium atoms in a high finesse optical cavity. We show
theoretically and experimentally that the cross-Kerr effect due to the
saturation of the optical transition produces quadrature squeezing on both the
mean field and the orthogonally polarized vacuum mode. An interpretation of
this vacuum squeezing as polarization squeezing is given and a method for
measuring quantum Stokes parameters for weak beams via a local oscillator is
developed
Can optical squeezing be generated via polarization self-rotation in a thermal vapour cell?
The traversal of an elliptically polarized optical field through a thermal
vapour cell can give rise to a rotation of its polarization axis. This process,
known as polarization self-rotation (PSR), has been suggested as a mechanism
for producing squeezed light at atomic transition wavelengths. In this paper,
we show results of the characterization of PSR in isotopically enhanced
Rubidium-87 cells, performed in two independent laboratories. We observed that,
contrary to earlier work, the presence of atomic noise in the thermal vapour
overwhelms the observation of squeezing. We present a theory that contains
atomic noise terms and show that a null result in squeezing is consistent with
this theory.Comment: 10 pages, 11 figures, submitted to PRA. Please email author for a PDF
file if the article does not appear properl
Experimental measurement of photothermal effect in Fabry-Perot cavities
We report the experimental observation of the photothermal effect. The
measurements are performed by modulating the laser power absorbed by the
mirrors of two high-finesse Fabry-Perot cavities. The results are very well
described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A.
Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the
correctness of such calculations. Our observations and quantitative
characterization of the photothermal effect demonstrate its critical importance
for high sensitivity interferometric displacement measurements, as those
necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
