327 research outputs found
QUIJOTE Scientific Results. II. Polarisation Measurements of the Microwave Emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44
We present Q-U-I JOint TEnerife (QUIJOTE) intensity and polarisation maps at
10-20 GHz covering a region along the Galactic plane 24<l<45 deg, |b|<8 deg.
These maps result from 210 h of data, have a sensitivity in polarisation of ~40
muK/beam and an angular resolution of ~1 deg. Our intensity data are crucial to
confirm the presence of anomalous microwave emission (AME) towards the two
molecular complexes W43 (22 sigma) and W47 (8 sigma). We also detect at high
significance (6 sigma) AME associated with W44, the first clear detection of
this emission towards a SNR. The new QUIJOTE polarisation data, in combination
with WMAP, are essential to: i) Determine the spectral index of the synchrotron
emission in W44, beta_sync =-0.62 +/-0.03, in good agreement with the value
inferred from the intensity spectrum once a free-free component is included in
the fit. ii) Trace the change in the polarisation angle associated with Faraday
rotation in the direction of W44 with rotation measure -404 +/- 49 rad/m2. And
iii) set upper limits on the polarisation of W43 of Pi_AME <0.39 per cent (95
per cent C.L.) from QUIJOTE 17~GHz, and <0.22 per cent from WMAP 41 GHz data,
which are the most stringent constraints ever obtained on the polarisation
fraction of the AME. For typical physical conditions (grain temperature and
magnetic field strengths), and in the case of perfect alignment between the
grains and the magnetic field, the models of electric or magnetic dipole
emissions predict higher polarisation fractions.Comment: Accepted for publication in MNRA
Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus 1 region
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 mum maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 mum with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics---including secondary filaments that often run orthogonally to the primary filament---and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core
Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology
The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field
The QUIJOTE experiment: project overview and first results
QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the
polarization of the Cosmic Microwave Background and other Galactic and
extragalactic signals at medium and large angular scales in the frequency range
10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first
QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory
(2400~m a.s.l). During 2014 the second telescope has been installed at this
observatory. A second instrument at 30~GHz will be ready for commissioning at
this telescope during summer 2015, and a third additional instrument at 40~GHz
is now being developed. These instruments will have nominal sensitivities to
detect the B-mode polarization due to the primordial gravitational-wave
component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings
of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel,
Spain (2014
Exploring dynamic lighting, colour and form with smart textiles
This paper addresses an ongoing research, aiming at the development of smart
textiles that transform the incident light that passes through them – light transmittance – to
design dynamic light without acting upon the light source. A colour and shape change
prototype was developed with the objective of studying textile changes in time; to explore
temperature as a dynamic variable through electrical activation of the smart materials and
conductive threads integrated in the textile substrate; and to analyse the relation between textile
chromic and morphologic behaviour in interaction with light. Based on the experiments
conducted, results have highlighted some considerations of the dynamic parameters involved in
the behaviour of thermo-responsive textiles and demonstrated design possibilities to create
interactive lighting scenarios.This work is supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and National Funds through FCT – Foundation for Science and Technology within the scope of the projects SFRH/BD/87196/2012, POCI-01-0145-FEDER-007136 and UID/CTM/00264. The authors also like to acknowledge Smart Textiles Design Lab for the support on the prototype development.info:eu-repo/semantics/publishedVersio
The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region
Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas Gingivalis Infection
MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-alpha] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-alpha secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-alpha secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection
- …
