1,808 research outputs found

    The singular field used to calculate the self-force on non-spinning and spinning particles

    Get PDF
    The singular field of a point charge has recently been described in terms of a new Green's function of curved spacetime. This singular field plays an important role in the calculation of the self-force acting upon the particle. We provide a method for calculating the singular field and a catalog of expansions of the singular field associated with the geodesic motion of monopole and dipole sources for scalar, electromagnetic and gravitational fields. These results can be used, for example, to calculate the effects of the self-force acting on a particle as it moves through spacetime.Comment: 14 pages; addressed referee's comments; published in PhysRev

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals

    Full text link
    We present a method to integrate the equations of motion that govern bound, accelerated orbits in Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition between osculating orbits corresponds to an evolution of the elements. In this paper we derive the evolution equations for a convenient set of orbital elements, assuming that the force acts only within the orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the force must be small. As an application of our method, we analyze the relative motion of two massive bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild spacetime whose mass parameter is equal to the system's total mass. The force then consists of terms that depend on the system's reduced mass. We highlight the importance of conservative terms in this force, which cause significant long-term changes in the time-dependence and phase of the relative orbit. From our results we infer some general limitations of the radiative approximation to the gravitational self-force, which uses only the dissipative terms in the force.Comment: 18 pages, 6 figures, final version to be published in Physical Review

    Intrinsic and extrinsic geometries of a tidally deformed black hole

    Full text link
    A description of the event horizon of a perturbed Schwarzschild black hole is provided in terms of the intrinsic and extrinsic geometries of the null hypersurface. This description relies on a Gauss-Codazzi theory of null hypersurfaces embedded in spacetime, which extends the standard theory of spacelike and timelike hypersurfaces involving the first and second fundamental forms. We show that the intrinsic geometry of the event horizon is invariant under a reparameterization of the null generators, and that the extrinsic geometry depends on the parameterization. Stated differently, we show that while the extrinsic geometry depends on the choice of gauge, the intrinsic geometry is gauge invariant. We apply the formalism to solutions to the vacuum field equations that describe a tidally deformed black hole. In a first instance we consider a slowly-varying, quadrupolar tidal field imposed on the black hole, and in a second instance we examine the tide raised during a close parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Self force in 2+1 electrodynamics

    Full text link
    The radiation reaction problem for an electric charge moving in flat space-time of three dimensions is discussed. The divergences stemming from the pointness of the particle are studied. A consistent regularization procedure is proposed, which exploits the Poincar\'e invariance of the theory. Effective equation of motion of radiating charge in an external electromagnetic field is obtained via the consideration of energy-momentum and angular momentum conservation. This equation includes the effect of the particle's own field. The radiation reaction is determined by the Lorentz force of point-like charge acting upon itself plus a non-local term which provides finiteness of the self-action.Comment: 20 pages, 3 figure

    Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts

    Full text link
    Extreme mass ratio bursts (EMRBs) have been proposed as a possible source for future space-borne gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA). These events are characterized by long-period, nearly-radial orbits of compact objects around a central massive black hole. The gravitational radiation emitted during such events consists of a short burst, corresponding to periapse passage, followed by a longer, silent interval. In this paper we investigate the impact of including relativistic corrections to the description of the compact object's trajectory via a geodesic treatment, as well as including higher-order multipole corrections in the waveform calculation. The degree to which the relativistic corrections are important depends on the EMRB's orbital parameters. We find that relativistic EMRBs (v_{max}}/c > 0.25) are not rare and actually account for approximately half of the events in our astrophysical model. The relativistic corrections tend to significantly change the waveform amplitude and phase relative to a Newtonian description, although some of this dephasing could be mimicked by parameter errors. The dephasing over several bursts could be of particular importance not only to gravitational wave detection, but also to parameter estimation, since it is highly correlated to the spin of the massive black hole. Consequently, we postulate that if a relativistic EMRB is detected, such dephasing might be used to probe the relativistic character of the massive black hole and obtain information about its spin.Comment: 13 pages, 8 figures, 2 tables. Replaced with version accepted for publication in the Ap.

    Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force

    Get PDF
    The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of Blanchet & Iyer (2003) to the case of spinning (nonprecessing) binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected properties: (1) it exactly reproduces the Schwarzschild ISCO in the test-mass limit, and (2) it accurately approximates the recently-calculated shift in the Schwarzschild ISCO frequency due to the conservative-piece of the gravitational self-force [Barack & Sago (2009)]. The generalization of this ISCO condition to spinning binaries has the property that it also exactly reproduces the Kerr ISCO in the test-mass limit (up to the order at which PN spin corrections are currently known). The shift in the ISCO due to the spin of the test-particle is also calculated. Remarkably, the gauge-invariant PN ISCO condition exactly reproduces the ISCO shift predicted by the Papapetrou equations for a fully-relativistic spinning particle. It is surprising that an analysis of the stability of the standard PN equations of motion is able (without any form of "resummation") to accurately describe strong-field effects of the Kerr spacetime. The ISCO frequency shift due to the conservative self-force in Kerr is also calculated from this new ISCO condition, as well as from the effective-one-body Hamiltonian of Barausse & Buonanno (2010). These results serve as a useful point-of-comparison for future gravitational self-force calculations in the Kerr spacetime.Comment: 17 pages, 2 figures, 1 table. v2: references added; minor changes to match published versio

    Can the post-Newtonian gravitational waveform of an inspiraling binary be improved by solving the energy balance equation numerically?

    Get PDF
    The detection of gravitational waves from inspiraling compact binaries using matched filtering depends crucially on the availability of accurate template waveforms. We determine whether the accuracy of the templates' phasing can be improved by solving the post-Newtonian energy balance equation numerically, rather than (as is normally done) analytically within the post-Newtonian perturbative expansion. By specializing to the limit of a small mass ratio, we find evidence that there is no gain in accuracy.Comment: 13 pages, RevTeX, 5 figures included via eps

    Improved filters for gravitational waves from inspiralling compact binaries

    Full text link
    The order of the post-Newtonian expansion needed, to extract in a reliable and accurate manner the fully general relativistic gravitational wave signal from inspiralling compact binaries, is explored. A class of approximate wave forms, called P-approximants, is constructed based on the following two inputs: (a) The introduction of two new energy-type and flux-type functions e(v) and f(v), respectively, (b) the systematic use of Pade approximation for constructing successive approximants of e(v) and f(v). The new P-approximants are not only more effectual (larger overlaps) and more faithful (smaller biases) than the standard Taylor approximants, but also converge faster and monotonically. The presently available O(v/c)^5-accurate post-Newtonian results can be used to construct P-approximate wave forms that provide overlaps with the exact wave form larger than 96.5% implying that more than 90% of potential events can be detected with the aid of P-approximants as opposed to a mere 10-15 % that would be detectable using standard post-Newtonian approximants.Comment: Latex ([prd,aps,eqsecnum,epsf]{revtex}), 40 pages including 12 encapsulated figures. (The paper, together with all the figures and tables is available from ftp://carina.astro.cf.ac.uk/pub/incoming/sathya/dis97.uu
    corecore