505 research outputs found

    Current Trends in Improving of Artificial Joints Design and Technologies for Their Arthroplasty

    Get PDF
    There is a global tendency to rejuvenate joint diseases, and serious diseases such as arthrosis and arthritis develop in 90% of people over 55 years of age. They are accompanied by degradation of cartilage, joint deformities and persistent pain, which leads to limited mobility and a significant deterioration in the quality of life of patients. For the treatment of these diseases in the late stages, depending on the indications, various methods are used, the most radical of which are methods of joint arthroplasty and, in particular, total arthroplasty. Currently, total arthroplasty is one of the most effective and high-quality surgical operations at the relevant medical indications. However, complications may also arise after it, leading, inter alia, to the need for repeated surgical intervention. In order to minimize the likelihood of complications, the artificial joints used in total arthroplasty and the technology of their fabrication are constantly being improved, which leads to the emergence of new designs and methods for their integration with living tissues. At the same time, at the moment, the improvement of traditional designs and production technologies has almost reached the top of their art, and their further improvements can be insignificantly or are associated with the use of the most up-to-day technologies, allowing for friction couples with low tribological properties to provide for them high ones, for example, gradient increase hardness in the couple titanium alloy on titanium alloy. This paper presents the current state of traditional technical means and technologies for joint arthroplasty. The main attention is paid to the analysis of the latest technologies in the field of joint arthroplasty, such as osseointegration of artificial joints, the improvement of materials with the property of osteoimmunomodulation, the improvement of joint arthroplasty technologies based on the modeling of dynamic osteosynthesis, as well as the identification of possible unconventional designs of artificial joints that contribute to these technologies, predictive assessment of areas for technologies improvement.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    An extremal model for amorphous media plasticity

    Full text link
    An extremal model for the plasticity of amorphous materials is studied in a simple two-dimensional anti-plane geometry. The steady-state is analyzed through numerical simulations. Long-range spatial and temporal correlations in local slip events are shown to develop, leading to non-trivial and highly anisotropic scaling laws. In particular, the plastic strain is shown to statistically concentrate over a region which tends to align perpendicular to the displacement gradient. By construction, the model can be seen as giving rise to a depinning transition, the threshold of which (i.e. the macroscopic yield stress) also reveal scaling properties reflecting the localization of the activity.Comment: 4 pages, 5 figure

    Thermodynamic aspects of materials' hardness: prediction of novel superhard high-pressure phases

    Full text link
    In the present work we have proposed the method that allows one to easily estimate hardness and bulk modulus of known or hypothetical solid phases from the data on Gibbs energy of atomization of the elements and corresponding covalent radii. It has been shown that hardness and bulk moduli of compounds strongly correlate with their thermodynamic and structural properties. The proposed method may be used for a large number of compounds with various types of chemical bonding and structures; moreover, the temperature dependence of hardness may be calculated, that has been performed for diamond and cubic boron nitride. The correctness of this approach has been shown for the recently synthesized superhard diamond-like BC5. It has been predicted that the hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be synthesized at high pressures and temperatures, should have extreme hardness

    Plastic Response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain-rate

    Full text link
    We analyze in details the atomistic response of a model amorphous material submitted to plastic shear in the athermal, quasistatic limit. After a linear stress-strain behavior, the system undergoes a noisy plastic flow. We show that the plastic flow is spatially heterogeneous. Two kinds of plastic events occur in the system: quadrupolar localized rearrangements, and shear bands. The analysis of the individual motion of a particle shows also two regimes: a hyper-diffusive regime followed by a diffusive regime, even at zero temperature

    Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers

    Get PDF
    Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon-or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    ONE-DIMENSIONAL BIOLOGICAL MODEL OF SYNOVIAL JOINTS REGENERATIVE REHABILITATION IN OSTEOARTHRITIS

    Get PDF
    This work is devoted to the study of a one-dimensional phenomenological model of a focal defect regenerative rehabilitation in the articular cartilage. The model is based on six differential equations in partial derivatives of the “Diffusion-Reaction” type, which was previously used by a number of authors to study cellular processes in various tissues under cell therapy conditions. To take into account the influence of moderate mechanical stimulation of immature tissue, an indirect approach was used, as a result of which some model parameters that directly affect cell proliferation and differentiation were varied considering experimental data. The results of  the model study  show that moderate stimulation of immature tissue in the early stages of repair the focal articular cartilage defect under conditions of cell therapy leads to an intensification of regenerative processes in the tissue and promotes more rapid formation of the extracellular matrix

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway

    Get PDF
    In this study, we investigated whether the ability of Eph receptor signaling to mediate cell repulsion is antagonized by fibroblast growth factor receptor (FGFR) activation that can promote cell invasion. We find that activation of FGFR1 in EphB2-expressing cells prevents segregation, repulsion, and collapse responses to ephrinB1 ligand. FGFR1 activation leads to increased phosphorylation of unstimulated EphB2, which we show is caused by down-regulation of the leukocyte common antigen–related tyrosine phosphatase receptor that dephosphorylates EphB2. In addition, FGFR1 signaling inhibits further phosphorylation of EphB2 upon stimulation with ephrinB1, and we show that this involves a requirement for the mitogen-activated protein kinase (MAPK) pathway. In the absence of activated FGFR1, EphB2 activates the MAPK pathway, which in turn promotes EphB2 activation in a positive feedback loop. However, after FGFR1 activation, the induction of Sprouty genes inhibits the MAPK pathway downstream of EphB2 and decreases cell repulsion and segregation. These findings reveal a novel feedback loop that promotes EphB2 activation and cell repulsion that is blocked by transcriptional targets of FGFR1
    corecore