2,699 research outputs found
Quantum chaos in the mesoscopic device for the Josephson flux qubit
We show that the three-junction SQUID device designed for the Josephson flux
qubit can be used to study quantum chaos when operated at high energies. In the
parameter region where the system is classically chaotic we analyze the
spectral statistics. The nearest neighbor distributions are well fitted
by the Berry Robnik theory employing as free parameters the pure classical
measures of the chaotic and regular regions of phase space in the different
energy regions. The phase space representation of the wave functions is
obtained via the Husimi distributions and the localization of the states on
classical structures is analyzed.Comment: Final version, to be published in Phys. Rev. B. References added,
introduction and conclusions improve
Testing general relativity using golden black-hole binaries
The coalescences of stellar-mass black-hole binaries through their inspiral,
merger, and ringdown are among the most promising sources for ground-based
gravitational-wave (GW) detectors. If a GW signal is observed with sufficient
signal-to-noise ratio, the masses and spins of the black holes can be estimated
from just the inspiral part of the signal. Using these estimates of the initial
parameters of the binary, the mass and spin of the final black hole can be
uniquely predicted making use of general-relativistic numerical simulations. In
addition, the mass and spin of the final black hole can be independently
estimated from the merger--ringdown part of the signal. If the binary black
hole dynamics is correctly described by general relativity (GR), these
independent estimates have to be consistent with each other. We present a
Bayesian implementation of such a test of general relativity, which allows us
to combine the constraints from multiple observations. Using kludge modified GR
waveforms, we demonstrate that this test can detect sufficiently large
deviations from GR, and outline the expected constraints from upcoming GW
observations using the second-generation of ground-based GW detectors.Comment: 5 pages, 2 fig
La teoría y los procedimientos de su construcción: Una experiencia en Física e Historia
Simultaneous XMM-Newton and ESO VLT observations of SN 1995N: probing the wind/ejecta interaction
We present the results of the first {\it XMM-Newton} observation of the
interacting type IIn supernova 1995N, performed in July 2003. We find that the
0.2--10.0 keV unabsorbed flux dropped at a value of erg cm s, almost one order of magnitude lower than that
of a previous {\it ASCA} observation of January 1998. From all the available
X-ray measurements, an interesting scenario emerges where the X-ray light
emission may be produced by a two-phase (clumpy/smooth) circumstellar medium.
The X-ray spectral analysis shows statistically significant evidence for the
presence of two distinct components, that can be modeled with emission from
optically thin, thermal plasmas at different temperatures. The exponent of the
ejecta density distribution inferred from these temperatures is .
From the fluxes of the two spectral components we derive an estimate of the
mass loss rate of the supernova progenitor, , at the upper end of the interval exhibited by red
super-giants. Coordinated optical and infrared observations allow us to
reconstruct the simultaneous infrared to X-ray flux distribution of SN 1995N.
We find that, at 9 years after explosion, the direct X-ray thermal
emission due to the wind/ejecta interaction is times larger than the
total reprocessed IR/optical flux.Comment: 11 pages, 7 figures, MNRAS, in pres
Micelles by self-assembling peptide-conjugate amphiphile: synthesis and structural characterization.
The solid-phase synthesis of a novel amphiphilic peptide conjugate I, contg. in the same mol. three different functions: N,N-bis[2-[bis(carboxyethyl)amino]ethyl]-L-glutamic acid chelating agent, the CCK8 bioactive peptide, and a hydrophobic moiety contg. four alkyl chains with 18 carbon atoms each, is reported. In water soln. at pH 7.4, I self-assembles in very stable micelles at very low concn. [crit. micellar concn. (cmc) values of 5 10-7 mol kg-1] as confirmed by fluorescence spectroscopy. The structural characterization, obtained with small-angle neutron scattering (SANS) measurements, indicates that the aggregates are substantially represented by ellipsoidal micelles with an aggregation no. of 39 2 and the two micellar axes of about 52 and 26
Structure of nanoparticles embedded in micellar polycrystals
We investigate by scattering techniques the structure of water-based soft
composite materials comprising a crystal made of Pluronic block-copolymer
micelles arranged in a face-centered cubic lattice and a small amount (at most
2% by volume) of silica nanoparticles, of size comparable to that of the
micelles. The copolymer is thermosensitive: it is hydrophilic and fully
dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into
micelles at room temperature, where the block-copolymer is amphiphilic. We use
contrast matching small-angle neuron scattering experiments to probe
independently the structure of the nanoparticles and that of the polymer. We
find that the nanoparticles do not perturb the crystalline order. In addition,
a structure peak is measured for the silica nanoparticles dispersed in the
polycrystalline samples. This implies that the samples are spatially
heterogeneous and comprise, without macroscopic phase separation, silica-poor
and silica-rich regions. We show that the nanoparticle concentration in the
silica-rich regions is about tenfold the average concentration. These regions
are grain boundaries between crystallites, where nanoparticles concentrate, as
shown by static light scattering and by light microscopy imaging of the
samples. We show that the temperature rate at which the sample is prepared
strongly influence the segregation of the nanoparticles in the
grain-boundaries.Comment: accepted for publication in Langmui
Spitzer measurements of atomic and molecular abundances in the Type IIP SN 2005af
We present results based on Spitzer Space Telescope mid-infrared (3.6-30
micron) observations of the nearby IIP supernova 2005af. We report the first
ever detection of the SiO molecule in a Type IIP supernova. Together with the
detection of the CO fundamental, this is an exciting finding as it may signal
the onset of dust condensation in the ejecta. From a wealth of fine-structure
lines we provide abundance estimates for stable Ni, Ar, and Ne which, via
spectral synthesis, may be used to constrain nucleosynthesis models.Comment: ApJ Letters (accepted
Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector
The upcoming European design study `Einstein gravitational-wave Telescope'
represents the first step towards a substantial, international effort for the
design of a third-generation interferometric gravitational wave detector. It is
generally believed that third-generation instruments might not be installed
into existing infrastructures but will provoke a new search for optimal
detector sites. Consequently, the detector design could be subject to fewer
constraints than the on-going design of the second generation instruments. In
particular, it will be prudent to investigate alternatives to the traditional
L-shaped Michelson interferometer. In this article, we review an old proposal
to use three Michelson interferometers in a triangular configuration. We use
this example of a triple Michelson interferometer to clarify the terminology
and will put this idea into the context of more recent research on
interferometer technologies. Furthermore the benefits of a triangular detector
will be used to motivate this design as a good starting point for a more
detailed research effort towards a third-generation gravitational wave
detector.Comment: Minor corrections to the main text and two additional appendices. 14
pages, 6 figure
A Spitzer Space Telescope study of SN 2002hh: an infrared echo from a Type IIP supernova
We present late-time (590-994 d) mid-IR photometry of the normal, but
highly-reddened Type IIP supernova SN 2002hh. Bright, cool, slowly-fading
emission is detected from the direction of the supernova. Most of this flux
appears not to be driven by the supernova event but instead probably originates
in a cool, obscured star-formation region or molecular cloud along the
line-of-sight. We also show, however, that the declining component of the flux
is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR
emission could also be coming from newly-condensed dust and/or an ejecta/CSM
impact but their contributions are likely to be small. For the case of a CSM-IR
echo, we infer a dust mass of as little as 0.036 M(solar) with a corresponding
CSM mass of 3.6(0.01/r(dg))M(solar) where r(dg) is the dust-to-gas mass ratio.
Such a CSM would have resulted from episodic mass loss whose rate declined
significantly about 28,000 years ago. Alternatively, an IR echo from a
surrounding, dense, dusty molecular cloud might also have been responsible for
the fading component. Either way, this is the first time that an IR echo has
been clearly identified in a Type IIP supernova. We find no evidence for or
against the proposal that Type IIP supernovae produce large amounts of dust via
grain condensation in the ejecta. However, within the CSM-IR echo scenario, the
mass of dust derived implies that the progenitors of the most common of
core-collapse supernovae may make an important contribution to the universal
dust content.Comment: 41 pages, 11 figures, 4 tables, accepted for publication in
Astrophysical Journal (References corrected
Huge Electro-/photo-/acidoinduced Second-order Nonlinear Contrasts from Multiaddressable Indolinooxazolodine
In this work, linear and nonlinear optical properties of electro-/acido-/photoswitchable indolino[2,1-b]oxazolidine derivatives were investigated. The linear optical properties of the closed and open forms have been characterized by UV–visible and IR spectroscopies associated with DFT calculations. Nonlinear optical properties of the compounds have been obtained by ex situ and in situ hyper-Rayleigh experiments in solution. We show that protonated, oxidized, and irradiated open forms exhibit the same visible absorption and NLO features. In particular, the closed and open forms exhibit a huge contrast of the first hyperpolarizability with an enhancement factor of 40–45. Additionally, we have designed an original electrochemical cell that allows to monitor in situ the hyper-Rayleigh response upon electrical stimulus. We report notably a partial but good and reversible NLO contrast in situ during oxidation/reduction cycles. Thereby, indolinooxazolidine moieties are versatile trimodal switchable units which are very promising for applications in devices
- …
