175 research outputs found

    Естественное старение литейного сплава AlMg₅Si₂Mn

    Get PDF
    Наведено литу структуру та структуру після гомогенізації виливків зі сплаву AlMg₅Si₂Mn, отриманих литтям у кокіль і за допомогою лиття під високим тиском. Зразки було досліджено методами диференціальної скануючої калориметрії, трансмісійної електронної мікроскопії, енергодисперсійного рентгенівського аналізу та визначення мікротвердості. Усередині зерен α-Al в обох сплавах було виявлено вигнуті пластинчаті виділення. Дослідженням цих виділень встановлено ряд особливостей, а саме: 1) їх склад дуже близький до стехіометричного складу Mg₂Si; 2) включення розподіляються уздовж дислокацій; 3) щільність включень значно вища для виливків, відлитих під високим тиском, оскільки в них матриця α-Al містить більше дислокацій, ніж у виливках, отриманих литтям у постійну форму; 4) включення випадковим чином розподілені в середині зерен α-Al, між ламелями Mg₂Si включень не спостерігалося; 5) гомогенізація сплаву призводить до повного розчинення включень, і при штучному старінні формуються нові голчасті виділення.The as-cast and heat treated structure of permanent mould and high pressure die castings of the AlMg₅Si₂Mn alloy has been investigated by differential scanning calorimetry, microhardness measurements, transmission electron microscopy and energy dispersive X-ray analysis. Curved plate-like precipitates were detected for both alloys inside the α-Al grains. Examination of these precipitates revealed a number of features, such as: 1) the composition of the precipitates is very close to the stoichiometric Mg₂Si compound; 2) precipitates are aligned along dislocations; 3) the precipitate density is much higher for the high pressure die castings where the α-Al matrix contains more dislocations than in permanent mould castings; 4) precipitates lie inside the α-Al grains where they are randomly distributed. The Mg₂Si lamellas were not observed between precipitates; 5) homogenization of the alloy results in complete dissolution of the precipitates and during artificial aging new needle-shaped precipitates are formed.Представлены литая структура и структура после гомогенизации отливок из сплава AlMg₅Si₂Mn, полученных литьем в кокиль и с помощью литья под высоким давлением. Образцы были исследованы методами дифференциальной сканирующей калориметрии, трансмиссионной электронной микроскопии, энергодисперсионного рентгеновского анализа и определения микротвердости. Внутри зерен α-Al в обоих сплавах были обнаружены изогнутые пластинчатые выделения. Исследование этих выделений выявило ряд особенностей, а именно: 1) их состав очень близок к стехиометрическому составу Mg₂Si; 2) включение распределяются вдоль дислокаций; 3) плотность включений значительно выше для отливок, отлитых под высоким давлением, так как в них матрица α-Al содержит больше дислокаций, чем в отливках, полученных литьем в постоянную форму; 4) включения случайным образом распределены в середине зерен α-A, между ламелями Mg₂Si включений не наблюдалось; 5) гомогенизация сплава приводит к полному растворению включений, и при искусственном старении формируются новые игольчатые выделения

    Pollination and dispersal trait spectra recover faster than the growth form spectrum during spontaneous succession in sandy old‐fields

    Get PDF
    Question: Spontaneous succession is the most natural and cost‐effective solution for grassland restoration. However, little is known about the time required for the recovery of grassland functionality, i.e., for the recovery of reproductive and vegetative processes typical of pristine grasslands. Since these processes operate at different scales, we addressed the question: do reproductive and vegetative processes require different recovery times during spontaneous succession? Location: Kiskunság sand region (Central Hungary). Methods: As combinations of plant traits can be used to highlight general patterns in ecological processes, we compared reproductive (pollination‐ and dispersal‐related) and vegetative (growth form) traits between recovered grasslands of different age (<10 years old; 10–20 years old; 20–40 years old) and pristine grasslands. Results: During spontaneous succession, the reproductive trait spectra became similar to those of pristine grasslands earlier than the vegetative ones. In arable land abandoned for 10 years, pollination‐ and dispersal‐related trait spectra did not show significant difference to those of pristine grasslands; anemophily and anemochory were the prevailing strategies. Contrarily, significant differences in the growth form spectrum could be observed even after 40 years of abandonment; in recovered grasslands erect leafy species prevailed, while the fraction of dwarf shrubs and tussock‐forming species was significantly lower than in pristine grasslands. Conclusions: The recovery of the ecological processes of pristine grasslands might require different amounts of time, depending on the spatial scale at which they operate. The reproductive trait spectra recovered earlier than the vegetative one, since reproductive attributes first determine plant species sorting at the regional level towards their respective habitats. The recovery of the vegetative trait spectrum needs more time as vegetative‐based interactions operate on a smaller spatial scale. Thus, vegetative traits might be more effective in the long‐term assessment of restoration success than the reproductive ones

    THE EFFECT OF SCANDIUM AND CHROMIUM ON THE MECHANICAL PROPERTIES OF ALLOYS OF THE Al–Mg–Si–Mn SYSTEM

    Full text link
    The article presents data on the change in mechanical properties (hardness, tensile strength, yield strength, relative elongation) during alloying of the Al.5,5Mg–2,5Si– 0,7Mn alloy with chromium and scandium in the cast state and after age hardening.В работе приводятся данные по изменению механических свойств (твердость, временное сопротивление разрыву, предел текучести, относительно удлинение) базового сплава Al–5,5Mg–2,5Si–0,7Mn при легировании хромом и скандием в литом состоянии и после искусственного старения

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Effectiveness of reactive focal mass drug administration and reactive focal vector control to reduce malaria transmission in the low malaria-endemic setting of Namibia: a cluster-randomised controlled, open-label, two-by-two factorial design trial.

    Get PDF
    BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund

    ReSurveyEurope: A database of resurveyed vegetation plots in Europe

    Get PDF
    Aims: We introduce ReSurveyEurope - a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover-abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions: ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurvey:Europe data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome

    Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica

    Get PDF
    Biological soil crusts (BSCs) occur in arid and semi-arid regions worldwide including the Polar Regions. They are important ecosystem engineers, and their composition and areal coverage should be understood before assessing key current functional questions such as their role in biogeochemical nutrient cycles and possible climate change scenarios. Our aim was to investigate the variability of BSCs from Arctic Svalbard and the Antarctic Island, Livingston, using vegetation surveys based on classification by functional group. An additional aim was to describe the structure of BSCs and represent a classification system that can be used in future studies to provide a fast and efficient way to define vegetation type and areal coverage. Firstly, this study demonstrates huge areas occupied by BSCs in Arctic Svalbard, with up to 90 % of soil surface covered, dominated by bryophytes and cyanobacteria, and showing an unexpectedly high variability in many areas. Livingston Island has lower percentage coverage, up to 55 %, but is dominated by lichens. Our findings show that both Polar Regions have varied BSC coverage, within the sites and between them, especially considering their harsh climates and latitudinal positions. Secondly, we have classified the BSCs of both areas into a system that describes the dominant functional groups and local geography, creating a simple scheme that allows easy identification of the prevailing vegetation type. Our results represent the first contribution to the description of BSCs based on their functional group composition in Polar Regions

    Effects of nitrogen deposition on soil and vegetation in primary succession stages in inland drift sands

    Full text link
    Background and aims Primary succession was studied in acid inland drift sands. Main research questions were: 1) How do vegetation and soil change during succession? 2) How are soil parameters and species abundance affected by atmospheric nitrogen deposition? Methods One hundred sixty-five plots were selected in 21 drift sands throughout The Netherlands, divided over eight succession stages from bare sand to dry heath and within a gradient in nitrogen deposition. Vegetation development and soil parameters were described and water-extractable elements measured and differences between high (>30 kg N ha−1 year−1) and lower nitrogen deposition sites calculated. Results Vegetation cover and height increased during succession. Lichens contributed most to plant species diversity. Thickness of Ah horizon increased and pH decreased and concentrations of Fe, Al, S increased. Base cations increased as well, despite the drop in pH. Also, water-extractable ammonium, nitrate and phosphate increased, along with the NH4:NO3 ratio. Sites with high nitrogen deposition had higher NH4:NO3 and Al:Ca ratios, lower pH, higher cover of algae, lower lichen and total species diversity, more Pinus sylvestris seedlings and more species of late succession stages. Conclusions Drift sand succession seems to be mainly driven by an increase in organic matter, but is accelerated by nitrogen deposition
    corecore