1,937 research outputs found
False discovery rate: setting the probability of false claim of detection
When testing multiple hypothesis in a survey --e.g. many different source
locations, template waveforms, and so on-- the final result consists in a set
of confidence intervals, each one at a desired confidence level. But the
probability that at least one of these intervals does not cover the true value
increases with the number of trials. With a sufficiently large array of
confidence intervals, one can be sure that at least one is missing the true
value. In particular, the probability of false claim of detection becomes not
negligible. In order to compensate for this, one should increase the confidence
level, at the price of a reduced detection power. False discovery rate control
is a relatively new statistical procedure that bounds the number of mistakes
made when performing multiple hypothesis tests. We shall review this method,
discussing exercise applications to the field of gravitational wave surveys.Comment: 7 pages, 3 table, 3 figures. Prepared for the Proceedings of GWDAW 9
(http://lappc-in39.in2p3.fr/GWDAW9) A new section was added with a numerical
example, along with two tables and a figure related to the new section. Many
smaller revisions to improve readibilit
Selective readout and back-action reduction for wideband acoustic gravitational wave detectors
We present the concept of selective readout for broadband resonant mass
gravitational wave detectors. This detection scheme is capable of specifically
selecting the signal from the contributions of the vibrational modes sensitive
to the gravitational waves, and efficiently rejecting the contribution from non
gravitationally sensitive modes. Moreover this readout, applied to a dual
detector, is capable to give an effective reduction of the back-action noise
within the frequency band of interest. The overall effect is a significant
enhancement in the predicted sensitivity, evaluated at the standard quantum
limit for a dual torus detector. A molybdenum detector, 1 m in diameter and
equipped with a wide area selective readout, would reach spectral strain
sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure
Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system
We report the experimental observation of two-mode squeezing in the
oscillation quadratures of a thermal micro-oscillator. This effect is obtained
by parametric modulation of the optical spring in a cavity opto-mechanical
system. In addition to stationary variance measurements, we describe the
dynamic behavior in the regime of pulsed parametric excitation, showing
enhanced squeezing effect surpassing the stationary 3dB limit. While the
present experiment is in the classical regime, our technique can be exploited
to produce entangled, macroscopic quantum opto-mechanical modes
Control of Recoil Losses in Nanomechanical SiN Membrane Resonators
In the context of a recoil damping analysis, we have designed and produced a
membrane resonator equipped with a specific on-chip structure working as a
"loss shield" for a circular membrane. In this device the vibrations of the
membrane, with a quality factor of , reach the limit set by the intrinsic
dissipation in silicon nitride, for all the modes and regardless of the modal
shape, also at low frequency. Guided by our theoretical model of the loss
shield, we describe the design rationale of the device, which can be used as
effective replacement of commercial membrane resonators in advanced
optomechanical setups, also at cryogenic temperatures
Crystal dynamics and thermal properties of neptunium dioxide
We report an experimental and theoretical investigation of the lattice
dynamics and thermal properties of the actinide dioxide NpO. The
energy-wavevector dispersion relation for normal modes of vibration propagating
along the , , and high-symmetry lines in NpO at room
temperature has been determined by measuring the coherent one-phonon scattering
of X-rays from a 1.2 mg single-crystal specimen, the largest available
single crystal for this compound. The results are compared against ab initio
phonon dispersions computed within the first-principles density functional
theory in the generalized gradient approximation plus Hubbard correlation
(GGA+) approach, taking into account third-order anharmonicity effects in
the quasiharmonic approximation. Good agreement with the experiment is obtained
for calculations with an on-site Coulomb parameter eV and Hund's
exchange eV in line with previous electronic structure calculations.
We further compute the thermal expansion, heat capacity, thermal conductivity,
phonon linewidth, and thermal phonon softening, and compare with available
experiments. The theoretical and measured heat capacities are in close
agreement with another. About 27% of the calculated thermal conductivity is due
to phonons with energy higher than 25 meV ( 6 THz ), suggesting an
important role of high-energy optical phonons in the heat transport. The
simulated thermal expansion reproduces well the experimental data up to about
1000 K, indicating a failure of the quasiharmonic approximation above this
limit.Comment: 12 pages, 10 figure
Correlation between Gamma-Ray bursts and Gravitational Waves
The cosmological origin of -ray bursts (GRBs) is now commonly
accepted and, according to several models for the central engine, GRB sources
should also emit at the same time gravitational waves bursts (GWBs). We have
performed two correlation searches between the data of the resonant
gravitational wave detector AURIGA and GRB arrival times collected in the BATSE
4B catalog. No correlation was found and an upper limit \bbox{} on the averaged amplitude of gravitational waves
associated with -ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Weak in Space, Log in Time Improvement of the Lady{\v{z}}enskaja-Prodi-Serrin Criteria
In this article we present a Lady{\v{z}}enskaja-Prodi-Serrin Criteria for
regularity of solutions for the Navier-Stokes equation in three dimensions
which incorporates weak norms in the space variables and log improvement
in the time variable.Comment: 14 pages, to appea
Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature
We apply a feedback cooling technique to simultaneously cool the three
electromechanical normal modes of the ton-scale resonant-bar gravitational wave
detector AURIGA. The measuring system is based on a dc Superconducting Quantum
Interference Device (SQUID) amplifier, and the feedback cooling is applied
electronically to the input circuit of the SQUID. Starting from a bath
temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the
coolest normal mode. The same technique, implemented in a dedicated experiment
at subkelvin bath temperature and with a quantum limited SQUID, could allow to
approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure
Control of Recoil Losses in Nanomechanical SiN Membrane Resonators
In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of , reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures
Networks of gravitational wave detectors and three figures of merit
This paper develops a general framework for studying the effectiveness of
networks of interferometric gravitational wave detectors and then uses it to
show that enlarging the existing LIGO-VIRGO network with one or more planned or
proposed detectors in Japan (LCGT), Australia, and India brings major benefits,
including much larger detection rate increases than previously thought... I
show that there is a universal probability distribution function (pdf) for
detected SNR values, which implies that the most likely SNR value of the first
detected event will be 1.26 times the search threshold. For binary systems, I
also derive the universal pdf for detected values of the orbital inclination,
taking into account the Malmquist bias; this implies that the number of
gamma-ray bursts associated with detected binary coalescences should be 3.4
times larger than expected from just the beaming fraction of the gamma burst.
Using network antenna patterns, I propose three figures of merit that
characterize the relative performance of different networks... Adding {\em any}
new site to the planned LIGO-VIRGO network can dramatically increase, by
factors of 2 to 4, the detected event rate by allowing coherent data analysis
to reduce the spurious instrumental coincident background. Moving one of the
LIGO detectors to Australia additionally improves direction-finding by a factor
of 4 or more. Adding LCGT to the original LIGO-VIRGO network not only improves
direction-finding but will further increase the detection rate over the
extra-site gain by factors of almost 2, partly by improving the network duty
cycle... Enlarged advanced networks could look forward to detecting three to
four hundred neutron star binary coalescences per year.Comment: 38 pages, 7 figures, 2 tables. Accepted for publication in Classical
and Quantum Gravit
- …
