1,226 research outputs found
Sensitivity limitations in optical speed meter topology of gravitational-wave antennae
The possible design of QND gravitational-wave detector based on speed meter
principle is considered with respect to optical losses. The detailed analysis
of speed meter interferometer is performed and the ultimate sensitivity that
can be achieved is calculated. It is shown that unlike the position meter
signal-recycling can hardly be implemented in speed meter topology to replace
the arm cavities as it is done in signal-recycled detectors, such as GEO 600.
It is also shown that speed meter can beat the Standard Quantum Limit (SQL) by
the factor of in relatively wide frequency band, and by the factor of
in narrow band. For wide band detection speed meter requires quite
reasonable amount of circulating power MW. The advantage of the
considered scheme is that it can be implemented with minimal changes in the
current optical layout of LIGO interferometer.Comment: 20 pages, 12 figure
Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set
Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations
The future of social is personal: the potential of the personal data store
This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges
Nutrient Utilization of Winter Retained and Spring Ripened Fruit by Cedar Waxwings (Bombycilla cedrorum)
Frugivores that winter-over in temperate climates must use strategies that exploit any remaining fruit sources in order to obtain nutrients until spring fruit develops. This study compares nutrients available in persistent, winter retained fruits to nutrients available in late spring ripened fruits and utilization of those fruits by cedar waxwings (Bombycilla cedrorum). Uneaten fruit samples from Washington hawthorn (Crataegus phaeropyrum), crabapple (Malus sp.), serviceberry (Amelanchier canadensis), and Japanese scholar tree (Sophora japonica) sources along with corresponding resultant fecal waste samples were analyzed for dry mass content of Na+, K+, Mg2+, Ca2+ and N. Waxwing intakes of each nutrient were also compared with known requirements for growing eastern bluebirds. Findings suggest that waxwings are in positive balance for K+, Mg2+, and Ca2+ for the tested winter and spring fruits and that three of the four tested fruits may be adequate in maintaining a nitrogen budget. Winter retained hawthorn fruit may not be an adequate source of Na+. All other nutrients tested in both winter retained fruit diets showed positive balance for wild waxwings. Nutrient levels in over-wintered hawthorn fruit were found to change over time to provide a more optimal nutrient source. Some tested nutrient levels consumed by waxwings fell below levels required by growing bluebirds.Master'sCollege of Arts and Sciences: BiologyUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/117738/1/Purdue.pd
The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization
It is shown that photon shot noise and radiation-pressure back-action noise
are the sole forms of quantum noise in interferometric gravitational wave
detectors that operate near or below the standard quantum limit, if one filters
the interferometer output appropriately. No additional noise arises from the
test masses' initial quantum state or from reduction of the test-mass state due
to measurement of the interferometer output or from the uncertainty principle
associated with the test-mass state. Two features of interferometers are
central to these conclusions: (i) The interferometer output (the photon number
flux N(t) entering the final photodetector) commutes with itself at different
times in the Heisenberg Picture, [N(t), N(t')] = 0, and thus can be regarded as
classical. (ii) This number flux is linear in the test-mass initial position
and momentum operators x_o and p_o, and those operators influence the measured
photon flux N(t) in manners that can easily be removed by filtering -- e.g., in
most interferometers, by discarding data near the test masses' 1 Hz swinging
freqency. The test-mass operators x_o and p_o contained in the unfiltered
output N(t) make a nonzero contribution to the commutator [N(t), N(t')]. That
contribution is cancelled by a nonzero commutation of the photon shot noise and
radiation-pressure noise, which also are contained in N(t). This cancellation
of commutators is responsible for the fact that it is possible to derive an
interferometer's standard quantum limit from test-mass considerations, and
independently from photon-noise considerations. These conclusions are true for
a far wider class of measurements than just gravitational-wave interferometers.
To elucidate them, this paper presents a series of idealized thought
experiments that are free from the complexities of real measuring systems.Comment: Submitted to Physical Review D; Revtex, no figures, prints to 14
pages. Second Revision 1 December 2002: minor rewording for clarity,
especially in Sec. II.B.3; new footnote 3 and passages before Eq. (2.35) and
at end of Sec. III.B.
QND measurements for future gravitational-wave detectors
Second-generation interferometric gravitational-wave detectors will be
operating at the Standard Quantum Limit, a sensitivity limitation set by the
trade off between measurement accuracy and quantum back action, which is
governed by the Heisenberg Uncertainty Principle. We review several schemes
that allows the quantum noise of interferometers to surpass the Standard
Quantum Limit significantly over a broad frequency band. Such schemes may be an
important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information
on quantum noise in GW interferometer and several new items into Reference
list were adde
A Case-Control Study of Peripheral Blood Mitochondrial DNA Copy Number and Risk of Renal Cell Carcinoma
Background: Low mitochondrial DNA (mtDNA) copy number is a common feature of renal cell carcinoma (RCC), and may influence tumor development. Results: from a recent case-control study suggest that low mtDNA copy number in peripheral blood may be a marker for increased RCC risk. In an attempt to replicate that finding, we measured mtDNA copy number in peripheral blood DNA from a U.S. population-based case-control study of RCC. Methodology/Principal Findings: Relative mtDNA copy number was measured in triplicate by a quantitative real-time PCR assay using DNA extracted from peripheral whole blood. Cases (n = 603) had significantly lower mtDNA copy number than controls (n = 603; medians 0.85, 0.91 respectively; P = 0.0001). In multiple logistic regression analyses, the lowest quartile of mtDNA copy number was associated with a 60% increase in RCC risk relative to the highest quartile (OR = 1.6, 95% CI = 1.1–2.2; Ptrend = 0.009). This association remained in analyses restricted to cases treated by surgery alone (OR Q1 = 1.4, 95% CI = 1.0–2.1) and to localized tumors (2.0, 1.3–2.8). Conclusions/Significance: Our findings from this investigation, to our knowledge the largest of its kind, offer important confirmatory evidence that low mtDNA copy number is associated with increased RCC risk. Additional research is needed to assess whether the association is replicable in prospective studies
Comparing nuclear power trajectories in Germany and the UK: from ‘regimes' to ‘democracies’ in sociotechnical transitions and Discontinuities
This paper focuses on arguably the single most striking contrast in contemporary major energy politics in Europe (and even the developed world as a whole): the starkly differing civil nuclear policies of Germany and the UK. Germany is seeking entirely to phase out nuclear power by 2022. Yet the UK advocates a ‘nuclear renaissance’, promoting the most ambitious new nuclear construction programme in Western Europe.Here,this paper poses a simple yet quite fundamental question: what are the particular divergent conditions most strongly implicated in the contrasting developments in these two countries. With nuclear playing such an iconic role in historical discussions over technological continuity and transformation, answering this may assist in wider understandings of sociotechnical incumbency and discontinuity in the burgeoning field of‘sustainability transitions’. To this end, an ‘abductive’ approach is taken: deploying nine potentially relevant criteria for understanding the different directions pursued in Germany and the UK. Together constituted by 30 parameters spanning literatures related to socio-technical regimes in general as well as nuclear technology in particular, the criteria are divided into those that are ‘internal’ and ‘external’ to the ‘focal regime configuration’ of nuclear power and associated ‘challenger technologies’ like renewables.
It is ‘internal’ criteria that are emphasised in conventional sociotechnical regime theory, with ‘external’ criteria relatively less well explored. Asking under each criterion whether attempted discontinuation of nuclear power would be more likely in Germany or the UK, a clear picture emerges. ‘Internal’ criteria suggest attempted nuclear discontinuation should be more likely in the UK than in Germany– the reverse of what is occurring.
‘External’ criteria are more aligned with observed dynamics –especially those relating to military nuclear commitments and broader ‘qualities of democracy’. Despite many differences of framing concerning exactly what constitutes ‘democracy’, a rich political science literature on this point is unanimous in characterising Germany more positively than the UK. Although based only on a single case,a potentially important question is nonetheless raised as to whether sociotechnical regime theory might usefully give greater attention to the general importance of various aspects of democracy in constituting conditions for significant technological discontinuities and transformations. If so, the policy implications are significant. A number of important areas are identified for future research, including the roles of diverse understandings and specific aspects of democracy and the particular relevance of military nuclear commitments– whose under-discussion in civil nuclear policy literatures raises its own questions of democratic accountability
- …
