68 research outputs found
Effect of the one-child policy on influenza transmission in China: a stochastic transmission model
published_or_final_versio
FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model
Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development
Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility
On 11 June the World Health Organization officially raised the phase of
pandemic alert (with regard to the new H1N1 influenza strain) to level 6. We
use a global structured metapopulation model integrating mobility and
transportation data worldwide in order to estimate the transmission potential
and the relevant model parameters we used the data on the chronology of the
2009 novel influenza A(H1N1). The method is based on the maximum likelihood
analysis of the arrival time distribution generated by the model in 12
countries seeded by Mexico by using 1M computationally simulated epidemics. An
extended chronology including 93 countries worldwide seeded before 18 June was
used to ascertain the seasonality effects. We found the best estimate R0 = 1.75
(95% CI 1.64 to 1.88) for the basic reproductive number. Correlation analysis
allows the selection of the most probable seasonal behavior based on the
observed pattern, leading to the identification of plausible scenarios for the
future unfolding of the pandemic and the estimate of pandemic activity peaks in
the different hemispheres. We provide estimates for the number of
hospitalizations and the attack rate for the next wave as well as an extensive
sensitivity analysis on the disease parameter values. We also studied the
effect of systematic therapeutic use of antiviral drugs on the epidemic
timeline. The analysis shows the potential for an early epidemic peak occurring
in October/November in the Northern hemisphere, likely before large-scale
vaccination campaigns could be carried out. We suggest that the planning of
additional mitigation policies such as systematic antiviral treatments might be
the key to delay the activity peak inorder to restore the effectiveness of the
vaccination programs.Comment: Paper: 29 Pages, 3 Figures and 5 Tables. Supplementary Information:
29 Pages, 5 Figures and 7 Tables. Print version:
http://www.biomedcentral.com/1741-7015/7/4
A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels
<p>Abstract</p> <p>Background</p> <p>In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several <it>concerns </it>about the practical use of these models. In this review paper, we examine the extent to which the current literature already addresses these <it>concerns </it>and identify means of enhancing the current models for higher operational use.</p> <p>Methods</p> <p>We surveyed PubMed and other sources for published research literature on simulation models for influenza pandemic preparedness. We identified 23 models published between 1990 and 2010 that consider single-region (e.g., country, province, city) outbreaks and multi-pronged mitigation strategies. We developed a plan for examination of the literature based on the concerns raised by the policymakers.</p> <p>Results</p> <p>While examining the concerns about the adequacy and validity of data, we found that though the epidemiological data supporting the models appears to be adequate, it should be validated through as many updates as possible during an outbreak. Demographical data must improve its interfaces for access, retrieval, and translation into model parameters. Regarding the concern about credibility and validity of modeling assumptions, we found that the models often simplify reality to reduce computational burden. Such simplifications may be permissible if they do not interfere with the performance assessment of the mitigation strategies. We also agreed with the concern that social behavior is inadequately represented in pandemic influenza models. Our review showed that the models consider only a few social-behavioral aspects including contact rates, withdrawal from work or school due to symptoms appearance or to care for sick relatives, and compliance to social distancing, vaccination, and antiviral prophylaxis. The concern about the degree of accessibility of the models is palpable, since we found three models that are currently accessible by the public while other models are seeking public accessibility. Policymakers would prefer models scalable to any population size that can be downloadable and operable in personal computers. But scaling models to larger populations would often require computational needs that cannot be handled with personal computers and laptops. As a limitation, we state that some existing models could not be included in our review due to their limited available documentation discussing the choice of relevant parameter values.</p> <p>Conclusions</p> <p>To adequately address the concerns of the policymakers, we need continuing model enhancements in critical areas including: updating of epidemiological data during a pandemic, smooth handling of large demographical databases, incorporation of a broader spectrum of social-behavioral aspects, updating information for contact patterns, adaptation of recent methodologies for collecting human mobility data, and improvement of computational efficiency and accessibility.</p
Identification of Nine Novel Loci Associated with White Blood Cell Subtypes in a Japanese Population
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits
Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method
Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient's brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ± standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer's disease (AD) patients.Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55-90 years), we created: a mean ± SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients.The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25-45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes.To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease
2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease
The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
Evaluation of strain-specific effects in the immunosuppressive action of heterologous antithymus sera in mice.
- …
