4,203 research outputs found
Chemically gated electronic structure of a superconducting doped topological insulator system
Angle resolved photoemission spectroscopy is used to observe changes in the
electronic structure of bulk-doped topological insulator CuBiSe as
additional copper atoms are deposited onto the cleaved crystal surface. Carrier
density and surface-normal electrical field strength near the crystal surface
are estimated to consider the effect of chemical surface gating on atypical
superconducting properties associated with topological insulator order, such as
the dynamics of theoretically predicted Majorana Fermion vortices
Single-Dirac-Cone topological surface states in TlBiSe2 class of Topological Insulators
We have investigated several strong spin-orbit coupling ternary chalcogenides
related to the (Pb,Sn)Te series of compounds. Our first-principles calculations
predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and
TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We
identify the specific surface termination that realizes the single Dirac cone
through first-principles surface state computations. This termination minimizes
effects of dangling bonds making it favorable for photoemission (ARPES)
experiments. Our analysis predicts that thin films of these materials would
harbor novel 2D quantum spin Hall states, and support odd-parity topological
superconductivity. For a related work also see arXiv:1003.2615v1. Experimental
ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March
201
Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions
We investigate the effects of spin-flip scattering on the Hall transport and
spectral properties of gapped Dirac fermions. We find that in the weak
scattering regime, the Berry curvature distribution is dramatically compressed
in the electronic energy spectrum, becoming singular at band edges. As a result
the Hall conductivity has a sudden jump (or drop) of when the Fermi
energy sweeps across the band edges, and otherwise is a constant quantized in
units of . In parallel, spectral properties such as the density of
states and spin polarization are also greatly enhanced at band edges. Possible
experimental methods to detect these effects are discussed
Quasiparticle coherence and the nature of the metal-insulator phase transition in NaCoO
Layered cobaltates embody novel realizations of correlated quantum matter on
a spin-1/2 triangular lattice. We report a high-resolution systematic
photoemission study of the insulating cobaltates (Na1/2CoO2 and K1/2CoO2).
Observation of single-particle gap opening and band-folding provides direct
evidence of anisotropic particle-hole instability on the Fermi surface due to
its unique topology. Kinematic overlap of the measured Fermi surface is
observed with the x cobalt charge-order Brillouin zone near
x=1/3 but not at x=1/2 where insulating transition is actually observed. Unlike
conventional density-waves, charge-stripes or band insulators, the on-set of
the gap depends on the quasiparticle's quantum coherence which is found to
occur well below the disorder-order symmetry breaking temperature of the
crystal (the first known example of its kind).Comment: 4+ pages, 5 figure
Emergence of Fermi pockets in an excitonic CDW melted novel superconductor
A superconducting (SC) state (Tc ~ 4.2K) has very recently been observed upon
successful doping of the CDW ordered triangular lattice TiSe, with copper.
Using high resolution photoemission spectroscopy we identify, for the first
time, the momentum space locations of the doped electrons that form the Fermi
sea of the parent superconductor. With doping, we find that the kinematic
nesting volume increases whereas the coherence of the CDW order sharply drops.
In the superconducting doping, we observe the emergence of a large density of
states in the form of a narrow electron pocket near the \textit{L}-point of the
Brillouin Zone with \textit{d}-like character. The \textit{k}-space electron
distributions highlight the unconventional interplay of CDW to SC cross-over
achieved through non-magnetic copper doping.Comment: 4+ pages, 5 figures; Accepted for publication in Phys. Rev. Lett.
(2007
- …
