1,598 research outputs found
Brain MR Spectroscopy Changes Precede Frontotemporal Lobar Degeneration Phenoconversion in Mapt Mutation Carriers.
Background and purposeThe objective of this study was to longitudinally investigate the trajectory of change in 1 H MRS measurements in asymptomatic MAPT mutation carriers who became symptomatic during follow-up, and to determine the time at which the neurochemical alterations accelerated during disease progression.MethodsWe identified eight MAPT mutations carriers who transitioned from asymptomatic to symptomatic disease during follow-up. All participants were longitudinally followed with an average of 7.75 years (range 4-11 years) and underwent two or more single voxel 1 H MRS examinations from the posterior cingulate voxel, with a total of 60 examinations. The rate of longitudinal change for each metabolite was estimated using linear mixed models. A flex point model was used to estimate the flex time point of the change in slope.ResultsThe decrease in the NAA/mI ratio accelerated 2.09 years prior to symptom onset, and continued to decline. A similar trajectory was observed in the presumed glial marker mI/Cr ratio accelerating 1.86 years prior to symptom onset.ConclusionsOur findings support the potential use of longitudinal 1 H MRS for monitoring the neurodegenerative progression in MAPT mutation carriers starting from the asymptomatic stage
Rates of lobar atrophy in asymptomatic MAPT mutation carriers.
IntroductionThe aim of this study was to investigate the rates of lobar atrophy in the asymptomatic microtubule-associated protein tau (MAPT) mutation carriers.MethodsMAPT mutation carriers (n = 14; 10 asymptomatic, 4 converters from asymptomatic to symptomatic) and noncarriers (n = 13) underwent structural magnetic resonance imaging and were followed annually with a median of 9.2 years. Longitudinal changes in lobar atrophy were analyzed using the tensor-based morphometry with symmetric normalization algorithm.ResultsThe rate of temporal lobe atrophy in asymptomatic MAPT mutation carriers was faster than that in noncarriers. Although the greatest rate of atrophy was observed in the temporal lobe in converters, they also had increased atrophy rates in the frontal and parietal lobes compared to noncarriers.DiscussionAccelerated decline in temporal lobe volume occurs in asymptomatic MAPT mutation carriers followed by the frontal and parietal lobe in those who have become symptomatic. The findings have implications for monitoring the progression of neurodegeneration during clinical trials in asymptomatic MAPT mutation carriers
A facility to Search for Hidden Particles (SHiP) at the CERN SPS
A new general purpose fixed target facility is proposed at the CERN SPS
accelerator which is aimed at exploring the domain of hidden particles and make
measurements with tau neutrinos. Hidden particles are predicted by a large
number of models beyond the Standard Model. The high intensity of the SPS
400~GeV beam allows probing a wide variety of models containing light
long-lived exotic particles with masses below (10)~GeV/c,
including very weakly interacting low-energy SUSY states. The experimental
programme of the proposed facility is capable of being extended in the future,
e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis
During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression. Dissection of plaque draining lymph node and lymphatic vessel in atherosclerotic ApoE(-/-)mice aggravated plaque formation, which was accompanied by increased intimal and adventitial CD3(+) T cell numbers. Likewise, inhibition of VEGF-C/D dependent lymphangiogenesis by AAV aided gene transfer of hVEGFR3-Ig fusion protein resulted in CD3(+) T cell enrichment in plaque intima and adventitia. hVEGFR3-Ig gene transfer did not compromise adventitial lymphatic density, pointing to VEGF-C/D independent lymphangiogenesis. We were able to identify the CXCL12/CXCR4 axis, which has previously been shown to indirectly activate VEGFR3, as a likely pathway, in that its focal silencing attenuated lymphangiogenesis and augmented T cell presence. Taken together, our study not only shows profound, partly CXCL12/CXCR4 mediated, expansion of lymph capillaries in the adventitia of atherosclerotic plaque in humans and mice, but also is the first to attribute an important role of lymphatics in plaque T cell accumulation and development.Peer reviewe
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain
Background Biological pathways that significantly contribute to sporadic
Alzheimer’s disease are largely unknown and cannot be observed directly.
Cognitive symptoms appear only decades after the molecular disease onset,
further complicating analyses. As a consequence, molecular research is often
restricted to late-stage post-mortem studies of brain tissue. However, the
disease process is expected to trigger numerous cellular signaling pathways
and modulate the local and systemic environment, and resulting changes in
secreted signaling molecules carry information about otherwise inaccessible
pathological processes. Results To access this information we probed relative
levels of close to 600 secreted signaling proteins from patients’ blood
samples using antibody microarrays and mapped disease-specific molecular
networks. Using these networks as seeds we then employed independent genome
and transcriptome data sets to corroborate potential pathogenic pathways.
Conclusions We identified Growth-Differentiation Factor (GDF) signaling as a
novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro
follow-up experiments, demonstrating the existence of a highly informative
link between cellular pathology and changes in circulatory signaling proteins
Recommended from our members
Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS
Summary Algorithms designed to identify canonical yeast prions predict that ~250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbor a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here, we define pathogenic mutations in PrLDs of hnRNPA2/B1 and hnRNPA1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and a case of familial ALS. Wild-type hnRNPA2 and hnRNPA1 display an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Importantly, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant ‘steric zipper’ motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs must be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone
- …
