5,267 research outputs found
A High Galactic Latitude HI 21cm-line Absorption Survey using the GMRT: I. Observations and Spectra
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the
Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum
sources, located at high (|b| >15deg.) Galactic latitudes. The Declination
coverage of the present survey is Decl. ~ -45deg.. With a mean rms optical
depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption
survey to date. To supplement the absorption data, we have extracted the HI
21-cm line emission profiles towards these 102 lines of sight from the Leiden
Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian
fitting analysis to identify the discrete absorption and emission components in
these profiles. In this paper, we present the spectra and the components. A
subsequent paper will discuss the interpretation of these results.Comment: 46 pages, Accepted for publication in Journal of Astrophysics &
Astronom
The Sasa-Satsuma higher order nonlinear Schrodinger equation and its bilinearization and multi-soliton solutions
Higher order and multicomponent generalizations of the nonlinear Schrodinger
equation are important in various applications, e.g., in optics. One of these
equations, the integrable Sasa-Satsuma equation, has particularly interesting
soliton solutions. Unfortunately the construction of multi-soliton solutions to
this equation presents difficulties due to its complicated bilinearization. We
discuss briefly some previous attempts and then give the correct
bilinearization based on the interpretation of the Sasa-Satsuma equation as a
reduction of the three-component Kadomtsev-Petvishvili hierarchy. In the
process we also get bilinearizations and multi-soliton formulae for a two
component generalization of the Sasa-Satsuma equation (the
Yajima-Oikawa-Tasgal-Potasek model), and for a (2+1)-dimensional
generalization.Comment: 13 pages in RevTex, added reference
Fitting Together the HI Absorption and Emission in the SGPS
In this paper we study 21-cm absorption spectra and the corresponding
emission spectra toward bright continuum sources in the test region (326deg< l
< 333 deg) of the Southern Galactic Plane Survey. This survey combines the high
resolution of the Australia Telescope Compact Array with the full brightness
temperature information of the Parkes single dish telescope. In particular, we
focus on the abundance and temperature of the cool atomic clouds in the inner
galaxy. The resulting mean opacity of the HI, , is measured as a
function of Galactic radius; it increases going in from the solar circle, to a
peak in the molecular ring of about four times its local value. This suggests
that the cool phase is more abundant there, and colder, than it is locally.
The distribution of cool phase temperatures is derived in three different
ways. The naive, ``spin temperature'' technique overestimates the cloud
temperatures, as expected. Using two alternative approaches we get good
agreement on a histogram of the cloud temperatures, T(cool), corrected for
blending with warm phase gas. The median temperature is about 65 K, but there
is a long tail reaching down to temperatures below 20 K. Clouds with
temperatures below 40 K are common, though not as common as warmer clouds (40
to 100 K).
Using these results we discuss two related quantities, the peak brightness
temperature seen in emission surveys, and the incidence of clouds seen in HI
self-absorption. Both phenomena match what would be expected based on our
measurements of and T(cool).Comment: 50 pages, 20 figure
"Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite
The present communication reports the first direct measurement of the
conformation of a polymer corona grafted around silica nano-particles dispersed
inside a nanocomposite, a matrix of the same polymer. This measurement
constitutes an experimental breakthrough based on a refined combination of
chemical synthesis, which permits to match the contribution of the neutron
silica signal inside the composite, and the use of complementary scattering
methods SANS and SAXS to extract the grafted polymer layer form factor from the
inter-particles silica structure factor. The modelization of the signal of the
grafted polymer on nanoparticles inside the matrix and the direct comparison
with the form factor of the same particles in solution show a clear-cut change
of the polymer conformation from bulk to the nanocomposite: a transition from a
stretched and swollen form in solution to a Gaussian conformation in the matrix
followed with a compression of a factor two of the grafted corona. In the
probed range, increasing the interactions between the grafted particles (by
increasing the particle volume fraction) or between the grafted and the free
matrix chains (decreasing the grafted-free chain length ratio) does not
influence the amplitude of the grafted brush compression. This is the first
direct observation of the wet-to-dry conformational transition theoretically
expected to minimize the free energy of swelling of grafted chains in
interaction with free matrix chains, illustrating the competition between the
mixing entropy of grafted and free chains, and the elastic deformation of the
grafted chains. In addition to the experimental validation of the theoretical
prediction, this result constitutes a new insight for the nderstanding of the
general problem of dispersion of nanoparticles inside a polymer matrix for the
design of new nanocomposites materials
Optimization of Partial Search
Quantum Grover search algorithm can find a target item in a database faster
than any classical algorithm. One can trade accuracy for speed and find a part
of the database (a block) containing the target item even faster, this is
partial search. A partial search algorithm was recently suggested by Grover and
Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is
measured by number of queries to the oracle. The author suggests new version of
Grover-Radhakrishnan algorithm which uses minimal number of queries to the
oracle. The algorithm can run on the same hardware which is used for the usual
Grover algorithm.Comment: 5 page
Nanorheology of viscoelastic shells: Applications to viral capsids
We study the microrheology of nanoparticle shells [Dinsmore et al. Science
298, 1006 (2002)] and viral capsids [Ivanovska et al. PNAS 101, 7600 (2004)] by
computing the mechanical response function and thermal fluctuation spectrum of
a viscoelastic spherical shell that is permeable to the surrounding solvent. We
determine analytically the damped dynamics of the shear, bend, and compression
modes of the shell coupled to the solvent both inside and outside the sphere in
the zero Reynolds number limit. We identify fundamental length and time scales
in the system, and compute the thermal correlation function of displacements of
antipodal points on the sphere and the mechanical response to pinching forces
applied at these points. We describe how such a frequency-dependent antipodal
correlation and/or response function, which should be measurable in new
AFM-based microrheology experiments, can probe the viscoelasticity of these
synthetic and biological shells constructed of nanoparticles.Comment: 17 page
Suppression and Enhancement of Soliton Switching During Interaction in Periodically Twisted Birefringent Fiber
Soliton interaction in periodically twisted birefringent optical fibers has
been analysed analytically with refernce to soliton switching. For this purpose
we construct the exact general two-soliton solution of the associated coupled
system and investigate its asymptotic behaviour. Using the results of our
analytical approach we point out that the interaction can be used as a switch
to suppress or to enhance soliton switching dynamics, if one injects
multi-soliton as an input pulse in the periodically twisted birefringent fiber.Comment: 10 pages, 4 figures, Latex, submitted to Phys. Rev.
Radio Polarization of the Young High-Magnetic-Field Pulsar PSR J1119-6127
We have investigated the radio polarization properties of PSR J1119-6127, a
recently discovered young radio pulsar with a large magnetic field. Using
pulsar-gated radio imaging data taken at a center frequency of 2496 MHz with
the Australia Telescope Compact Array, we have determined a rotation measure
for the pulsar of +842 +/- 23 rad m^-2. These data, combined with archival
polarimetry data taken at a center frequency of 1366 MHz with the Parkes
telescope, were used to determine the polarization characteristics of PSR
J1119-6127 at both frequencies. The pulsar has a fractional linear polarization
of ~75% and ~55% at 1366 and 2496 MHz, respectively, and the profile consists
of a single, wide component. This pulse morphology and high degree of linear
polarization are in agreement with previously noticed trends for young pulsars
(e.g., PSR J1513-5908). A rotating-vector (RV) model fit of the position angle
(PA) of linear polarization over pulse phase using the Parkes data suggests
that the radio emission comes from the leading edge of a conal beam. We discuss
PSR J1119-6127 in the context of a recent theoretical model of pulsar spin-down
which can in principle be tested with polarization and timing data from this
pulsar. Geometric constraints from the RV fit are currently insufficient to
test this model with statistical significance, but additional data may allow
such a test in the future.Comment: 9 pages, including 6 figures and 1 table. Accepted for publication in
Ap
- …
