352 research outputs found
NETIMIS: Dynamic Simulation of Health Economics Outcomes Using Big Data
Many healthcare organizations are now making good use of electronic health record (EHR) systems to record clinical information about their patients and the details of their healthcare. Electronic data in EHRs is generated by people engaged in complex processes within complex environments, and their human input, albeit shaped by computer systems, is compromised by many human factors. These data are potentially valuable to health economists and outcomes researchers but are sufficiently large and complex enough to be considered part of the new frontier of ‘big data’. This paper describes emerging methods that draw together data mining, process modelling, activity-based costing and dynamic simulation models. Our research infrastructure includes safe links to Leeds hospital’s EHRs with 3 million secondary and tertiary care patients. We created a multidisciplinary team of health economists, clinical specialists, and data and computer scientists, and developed a dynamic simulation tool called NETIMIS (Network Tools for Intervention Modelling with Intelligent Simulation; http://www.netimis.com) suitable for visualization of both human-designed and data-mined processes which can then be used for ‘what-if’ analysis by stakeholders interested in costing, designing and evaluating healthcare interventions. We present two examples of model development to illustrate how dynamic simulation can be informed by big data from an EHR. We found the tool provided a focal point for multidisciplinary team work to help them iteratively and collaboratively ‘deep dive’ into big data
Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate
Background:
A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated.
Results:
The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties.
Conclusion:
Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation
Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice
Background and Objective
Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI.
Study Design/Materials and Methods
TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test.
Results
The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests.
Conclusion
The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.National Institutes of Health (U.S.) (NIH grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (Military Photomedicine Program (FA9950-04-1-0079))Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of Scienc
Standardisation of fertigation in papaya for higher productivity and profitability
A field experiment conducted to standardize the fertigation in papaya (Carica papaya L.) variety Arka Prabhat with 12 treatments in split plot design, indicated that fertigation with 75% recommended fertilizers (250:250:500 g NPK/plant/year) through water soluble fertilizers recorded significantly higher fruit yield (47.34 t/ha), fertilizer use efficiency (20.45 kg fruit yield/kg of nutrient applied) and increase in 31% higher yield over soil application. The TSS of papaya fruit was although not significantly influenced by both doses and sources of fertigation, significantly lower cavity index (3.12%) was observed when RDF was supplied with organics to the soil. Fertigation with 100% RDF through water soluble fertilizers recorded significantly higher soil organic carbon (1.16%). However, fertigation of 75% RDF with inorganic fertilizers was found more economical with higher gross returns (Rs.7.10 lakh/ha), net returns (Rs.4.7 lakh/ha) and benefit cost ratio (2.96
Variations in achievement of evidence-based, high-impact quality indicators in general practice : An observational study
BACKGROUND: There are widely recognised variations in the delivery and outcomes of healthcare but an incomplete understanding of their causes. There is a growing interest in using routinely collected 'big data' in the evaluation of healthcare. We developed a set of evidence-based 'high impact' quality indicators (QIs) for primary care and examined variations in achievement of these indicators using routinely collected data in the United Kingdom (UK). METHODS: Cross-sectional analysis of routinely collected, electronic primary care data from a sample of general practices in West Yorkshire, UK (n = 89). The QIs covered aspects of care (including processes and intermediate clinical outcomes) in relation to diabetes, hypertension, atrial fibrillation, myocardial infarction, chronic kidney disease (CKD) and 'risky' prescribing combinations. Regression models explored the impact of practice and patient characteristics. Clustering within practice was accounted for by including a random intercept for practice. RESULTS: Median practice achievement of the QIs ranged from 43.2% (diabetes control) to 72.2% (blood pressure control in CKD). Considerable between-practice variation existed for all indicators: the difference between the highest and lowest performing practices was 26.3 percentage points for risky prescribing and 100 percentage points for anticoagulation in atrial fibrillation. Odds ratios associated with the random effects for practices emphasised this; there was a greater than ten-fold difference in the likelihood of achieving the hypertension indicator between the lowest and highest performing practices. Patient characteristics, in particular age, gender and comorbidity, were consistently but modestly associated with indicator achievement. Statistically significant practice characteristics were identified less frequently in adjusted models. CONCLUSIONS: Despite various policy and improvement initiatives, there are enduring inappropriate variations in the delivery of evidence-based care. Much of this variation is not explained by routinely collected patient or practice variables, and is likely to be attributable to differences in clinical and organisational behaviour
Repetitive Mild Traumatic Brain Injury Impairs Performance in a Rodent Assay of Cognitive Flexibility
Mild traumatic brain injury (mTBI) occurs in almost 80% of the 3 million reported cases of TBI-related emergency department visits each year in the United States. The majority of mTBIs, sometimes classified as concussions, are due to sports-related activities and typically occur repeatedly over the course of an athlete’s career. mTBI symptoms are generally classified as either somatic or neuropsychiatric/cognitive in nature and include impairments in prefrontal cortex mediated functions, including attention, memory, processing speed, reaction times, problem solving, and cognitive flexibility. To date, there remains a major gap in our understanding of the behavioral manifestations, underlying neurobiology, and treatment of mTBI. An even greater gap exists in our understanding of the consequences of repeated mTBI incidents. The goal of the present study was to examine the effects of repetitive mTBI within a rodent assay of cognitive flexibility. Rats were exposed to a series of three closed head injuries (controlled cortical impact model) within a week prior to performing an automated strategy shifting task, which required rats to learn and shift strategies according to changing task demands. Rats initially acquired a visual cue strategy in which a light illuminated above one of two possible levers (left or right) indicated the correct response for reward. Twenty-four hours after initial acquisition, rats again performed the task using the visual cue strategy followed by a series of strategy shifting and reversal learning challenges. Repetitive mTBI reduced throughput scores, a performance index that blends accuracy and response speed, and increased reaction times within the task. These results indicate that performance and task efficiency in an operant test of cognitive flexibility are impaired after repetitive mTBI. As such, this model presents a useful approach for further investigating the behavioral deficits and potential treatment strategies for patients who have experienced multiple mTBI insults
Perturbations in Risk/Reward Decision Making and Frontal Cortical Catecholamine Regulation Induced by Mild Traumatic Brain Injury
Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries
Challenges in managing real-time data in health information system (HIS)
© Springer International Publishing Switzerland 2016. In this paper, we have discussed the challenges in handling real-time medical big data collection and storage in health information system (HIS). Based on challenges, we have proposed a model for realtime analysis of medical big data. We exemplify the approach through Spark Streaming and Apache Kafka using the processing of health big data Stream. Apache Kafka works very well in transporting data among different systems such as relational databases, Apache Hadoop and nonrelational databases. However, Apache Kafka lacks analyzing the stream, Spark Streaming framework has the capability to perform some operations on the stream. We have identified the challenges in current realtime systems and proposed our solution to cope with the medical big data streams
Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability
BACKGROUND: Enteroendocrine cells collectively constitute our largest endocrine tissue, with serotonin (5-HT) secreting enterochromaffin (EC) cells being the largest component (~50 %). This gut-derived 5-HT has multiple paracrine and endocrine roles. EC cells are thought to act as nutrient sensors and luminal glucose is the major absorbed form of carbohydrate in the gut and activates secretion in an array of cell types. It is unknown whether EC cells release 5-HT in response to glucose in primary EC cells. Furthermore, fasting augments 5-HT synthesis and release into the circulation. However, which nutrients cause fasting-induced synthesis of EC cell 5-HT is unknown. Here we examine the effects of acute and chronic changes in glucose availability on 5-HT release from intact tissue and single EC cells. METHODS: We utilised established approaches in our laboratories measuring 5-HT release in intact mouse colon with amperometry. We then examined single EC cells function using our published protocol in guinea-pig colon. Single cell Ca(2+) imaging and amperometry were used with these cells. Real-time PCR was used along with amperometry, on primary EC cells cultured for 24 h in 5 or 25 mM glucose. RESULTS: We demonstrate that acute increases in glucose, at levels found in the gut lumen rather than in plasma, trigger 5-HT release from intact colon, and cause Ca(2+) entry and 5-HT release in primary EC cells. Single cell amperometry demonstrates that high glucose increases the amount of 5-HT released from individual vesicles as they undergo exocytosis. Finally, 24 h incubation of EC cells in low glucose causes an increase in the transcription of the 5-HT synthesising enzyme Tph1 as well as increasing in 5-HT secretion in EC cells. CONCLUSIONS: We demonstrate that primary EC cells respond to acute changes in glucose availability through increases in intracellular Ca(2+) the activation of 5-HT secretion, but respond to chronic changes in glucose levels through the transcriptional regulation of Tph1 to alter 5-HT synthesis
Mild head injury increasing the brain's vulnerability to a second concussive impact
Object. Mild, traumatic repetitive head injury (RHI) leads to neurobehavioral impairment and is associated with the early onset of neurodegenerative disease. The authors developed an animal model to investigate the behavioral and pathological changes associated with RHI.
Methods. Adult male C57BL/6 mice were subjected to a single injury (43 mice), repetitive injury (two injuries 24 hours apart 49 m ice), or no impact (36 mice). Cognitive function was assessed using the Morris water maze test, and neurological motor function was evaluated using a battery of neuroscore, rotarod, and rotating pole tests. The animals were also evaluated for cardiovascular changes, blood-brain barrier (BBB) breakdown, traumatic axonal injury, and neurodegenerative and histopathological changes between 1 day and 56 days after brain trauma. No cognitive dysfunction was detected in any group. The single-impact group showed mild impairment according to the neuroscore test at only 3 days postinjury, whereas RHI caused pronounced deficits at 3 days and 7 days following the second injury. Moreover, RHI led to functional impairment during the rotarod and rotating pole tests that was not observed in any animal after a single impact. Small areas of cortical BBB breakdown and axonal injury, observed after a single brain injury, were profoundly exacerbated after RHI. Immunohistochemical staining for microtubule-associated protein-2 revealed marked regional loss of immunoreactivity only in animals subjected to RHI. No deposits of beta -amyloid or tau were observed in any brain-injured animal.
Conclusions. On the basis of their results, the authors suggest that the brain has an increased vulnerability to a second traumatic insult for at least 24 hours following an initial episode of mild brain trauma
- …
