4,232 research outputs found
Supersymmetric Sum Rules for Electromagnetic Multipoles
We derive model independent, non-perturbative supersymmetric sum rules for
the magnetic and electric multipole moments of any theory with N=1
supersymmetry. We find that in any irreducible N=1 supermultiplet the diagonal
matrix elements of the l-multipole moments are completely fixed in terms of
their off-diagonal matrix elements and the diagonal (l-1)-multipole moments.Comment: 10 pages, plain Te
organic crystals: superconducting versus antiferromagnetic instabilities in an anisotropic triangular lattice Hubbard model
A Hubbard model at half-filling on an anisotropic triangular lattice has been
proposed as the minimal model to describe conducting layers of
organic materials. The model interpolates between the
square lattice and decoupled chains. The materials
present many similarities with cuprates, such as the presence of unconventional
metallic properties and the close proximity of superconducting and
antiferromagnetic phases. As in the cuprates, spin fluctuations are expected to
play a crucial role in the onset of superconductivity. We perform a
weak-coupling renormalization-group analysis to show that a superconducting
instability occurs. Frustration in the antiferromagnetic couplings, which
arises from the underlying geometrical arrangement of the lattice, breaks the
perfect nesting of the square lattice at half-filling. The spin-wave
instability is suppressed and a superconducting instability predominates. For
the isotropic triangular lattice, there are again signs of long-range magnetic
order, in agreement with studies at strong-coupling.Comment: 4 pages, 5 eps figs, to appear in Can. J. Phys. (proceedings of the
Highly Frustrated Magnetism (HFM-2000) conference, Waterloo, Canada, June
2000
Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability
Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for
which the source is a variable star, simply because most variable stars are
systematically eliminated from microlensing studies. Using observational data
for this event, we show that the intrinsic variability of a microlensed star is
a powerful tool to constrain the nature of the lens by breaking the degeneracy
between the microlens parallax and the blended light. We also present a
statistical test for discriminating the location of the lens based on the
\chi^2 contours of the vector \Lambda, the inverse of the projected velocity.
We find that while SMC self lensing is somewhat favored over halo lensing,
neither location can be ruled out with good confidence.Comment: 15 text pages + 2 tables + 7 figures. Published in the Astrophysical
Journa
The EROS2 search for microlensing events towards the spiral arms: the complete seven season results
The EROS-2 project has been designed to search for microlensing events
towards any dense stellar field. The densest parts of the Galactic spiral arms
have been monitored to maximize the microlensing signal expected from the stars
of the Galactic disk and bulge. 12.9 million stars have been monitored during 7
seasons towards 4 directions in the Galactic plane, away from the Galactic
center. A total of 27 microlensing event candidates have been found. Estimates
of the optical depths from the 22 best events are provided. A first order
interpretation shows that simple Galactic models with a standard disk and an
elongated bulge are in agreement with our observations. We find that the
average microlensing optical depth towards the complete EROS-cataloged stars of
the spiral arms is , a number that is
stable when the selection criteria are moderately varied. As the EROS catalog
is almost complete up to , the optical depth estimated for the
sub-sample of bright target stars with () is easier to interpret. The set of microlensing events
that we have observed is consistent with a simple Galactic model. A more
precise interpretation would require either a better knowledge of the distance
distribution of the target stars, or a simulation based on a Galactic model.
For this purpose, we define and discuss the concept of optical depth for a
given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic
Immunohistochemical subtypes predict the clinical outcome in high-risk node-negative breast cancer patients treated with adjuvant FEC regimen: results of a single-center retrospective study
Prognostic factors for disease-free survival in patients treated before 2005 September: multivariate analysis. (DOCX 15Â kb
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP
Exclusive rho rho production in two-photon collisions involving a single
highly virtual photon is studied with data collected at LEP at centre-of-mass
energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of
854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is
determined as a function of the photon virtuality, Q^2 and the two-photon
centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2
and 1.1GeV < Wgg < 3GeV
R Coronae Borealis stars in the Galactic Bulge discovered by EROS-2
Rare types of variable star may give unique insight into short-lived stages
of stellar evolution. The systematic monitoring of millions of stars and
advanced light curve analysis techniques of microlensing surveys make them
ideal for discovering also such rare variable stars. One example is the R
Coronae Borealis (RCB) stars, a rare type of evolved carbon-rich supergiant. We
have conducted a systematic search of the EROS-2 database for the Galactic
catalogue Bulge and spiral arms to find Galactic RCB stars. The light curves of
100 million stars, monitored for 6.7 years (from July 1996 to February
2003), have been analysed to search for the main signature of RCB stars, large
and rapid drops in luminosity. Follow-up spectroscopy has been used to confirm
the photometric candidates. We have discovered 14 new RCB stars, all in the
direction of the Galactic Bulge, bringing the total number of confirmed
Galactic RCB stars to about 51. After reddening correction, the colours and
absolute magnitudes of at least 9 of the stars are similar to those of
Magellanic RCB stars. This suggests that these stars are in fact located in the
Galactic Bulge, making them the first RCB stars discovered in the Bulge. The
localisation of the 5 remaining RCBs is more uncertain: 4 are either located
behind the Bulge at an estimated maximum distance of 14 kpc or have an unusual
thick circumstellar shell; the other is a DY Per RCB which may be located in
the Bulge, even if it is fainter than the known Magellanic DY Per. From the
small scale height found using the 9 new Bulge RCBs,
pc (95% C.L.), we conclude that the RCB stars follow a disk-like distribution
inside the Bulge.Comment: 20 pages, 26 figures, Accepted in A&
Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies
Microlensing is now a very popular observational astronomical technique. The
investigations accessible through this effect range from the dark matter
problem to the search for extra-solar planets. In this review, the techniques
to search for microlensing effects and to determine optical depths through the
monitoring of large samples of stars will be described. The consequences of the
published results on the knowledge of the Milky-Way structure and its dark
matter component will be discussed. The difficulties and limitations of the
ongoing programs and the perspectives of the microlensing optical depth
technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation.
General Relativity and Gravitation in press (2010) 0
Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud
For seven years, the EROS-2 project obtained a mass of photometric data on
variable stars. We present a peculiar Cepheid-like star, in the direction of
the Small Magellanic Cloud, which demonstrates unusual photometric behaviour
over a short time interval. We report on data of the photometry acquired by the
MARLY telescope and spectroscopy from the EFOSC instrument for this star,
called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid
HR 7308. The light curve of our target is analysed using the Analysis of
Variance method to determine a pulsational period of 5.5675 days. A fit of
time-dependent Fourier coefficients is performed and a search for proper motion
is conducted. The light curve exhibits a previously unobserved and spectacular
change in both mean magnitude and amplitude, which has no clear theoretical
explanation. Our analysis of the spectrum implies a radial velocity of 104 km
s and a metallicity of -0.40.2 dex. In the direction of right
ascension, we measure a proper motion of 17.46.0 mas yr using EROS
astrometry, which is compatible with data from the NOMAD catalogue. The nature
of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may
have detected a non-zero proper motion for this star, which would imply that it
is a foreground object. Its radial velocity, pulsational characteristics, and
photometric data, however, suggest that it is instead a Cepheid-like object
located in the SMC. In such a case, it would present a challenge to
conventional Cepheid models.Comment: Correction of typos in the abstrac
- …
