12,761 research outputs found
Maturation, Spawning Period, and Fecundity of the White Crappie, Pomoxis annularis Rafinesque, in Beaver Reservoir, Arkansas
Gonosomatic indices and ovum diameter frequency distributions showed that the Beaver Reservoir white crappie spawns from late April through May. During the spawning season females release eggs more than once. Various stages of ovarian ovum development were described. Sexual maturity was found in 2-year-old females of 197 mm and 3-year-old and older fish. Regression analyses of fecundity on total length, weight and age of white crappie indicated that the fish weight was the best predictor of fecundity
Comment on "Kinetic decoupling of WIMPs: Analytic expressions"
Visinelli and Gondolo (2015, hereafter VG15) derived analytic expressions for
the evolution of the dark matter temperature in a generic cosmological model.
They then calculated the dark matter kinetic decoupling temperature
and compared their results to the Gelmini and Gondolo (2008,
hereafter GG08) calculation of in an early matter-dominated
era (EMDE), which occurs when the Universe is dominated by either a decaying
oscillating scalar field or a semistable massive particle before Big Bang
nucleosynthesis. VG15 found that dark matter decouples at a lower temperature
in an EMDE than it would in a radiation-dominated era, while GG08 found that
dark matter decouples at a higher temperature in an EMDE than it would in a
radiation-dominated era. VG15 attributed this discrepancy to the presence of a
matching constant that ensures that the dark matter temperature is continuous
during the transition from the EMDE to the subsequent radiation-dominated era
and concluded that the GG08 result is incorrect. We show that the disparity is
due to the fact that VG15 compared in an EMDE to the decoupling
temperature in a radiation-dominated universe that would result in the same
dark matter temperature at late times. Since decoupling during an EMDE leaves
the dark matter colder than it would be if it decoupled during radiation
domination, this temperature is much higher than in a standard
thermal history, which is indeed lower than in an EMDE, as
stated by GG08.Comment: 4 pages, 1 figure; comment on arXiv: 1501.0223
Asymptotic Performance of Linear Receivers in MIMO Fading Channels
Linear receivers are an attractive low-complexity alternative to optimal
processing for multi-antenna MIMO communications. In this paper we characterize
the information-theoretic performance of MIMO linear receivers in two different
asymptotic regimes. For fixed number of antennas, we investigate the limit of
error probability in the high-SNR regime in terms of the Diversity-Multiplexing
Tradeoff (DMT). Following this, we characterize the error probability for fixed
SNR in the regime of large (but finite) number of antennas.
As far as the DMT is concerned, we report a negative result: we show that
both linear Zero-Forcing (ZF) and linear Minimum Mean-Square Error (MMSE)
receivers achieve the same DMT, which is largely suboptimal even in the case
where outer coding and decoding is performed across the antennas. We also
provide an approximate quantitative analysis of the markedly different behavior
of the MMSE and ZF receivers at finite rate and non-asymptotic SNR, and show
that while the ZF receiver achieves poor diversity at any finite rate, the MMSE
receiver error curve slope flattens out progressively, as the coding rate
increases.
When SNR is fixed and the number of antennas becomes large, we show that the
mutual information at the output of a MMSE or ZF linear receiver has
fluctuations that converge in distribution to a Gaussian random variable, whose
mean and variance can be characterized in closed form. This analysis extends to
the linear receiver case a well-known result previously obtained for the
optimal receiver. Simulations reveal that the asymptotic analysis captures
accurately the outage behavior of systems even with a moderate number of
antennas.Comment: 48 pages, Submitted to IEEE Transactions on Information Theor
An Euler aerodynamic method for leading-edge vortex flow simulation
The current capabilities and the future plans for a three dimensional Euler Aerodynamic Method are described. The basic solution algorithm is based on the finite volume, Runge-Kutta pseudo-time-stepping scheme of FLO-57. Several modifications to improve accuracy and computational efficiency were incorporated and others are being investigated. The computer code is used to analyze a cropped delta wing at 0.6 Mach number and an arrow wing at 0.85 Mach number. Computed aerodynamic parameters are compared with experimental data. In all cases, the configuration is impulsively started and no Kutta condition is applied at sharp edges. The results indicate that with additional development and validation, the present method will be a useful tool for engineering analysis of high speed aircraft
Smart Meter Privacy: A Utility-Privacy Framework
End-user privacy in smart meter measurements is a well-known challenge in the
smart grid. The solutions offered thus far have been tied to specific
technologies such as batteries or assumptions on data usage. Existing solutions
have also not quantified the loss of benefit (utility) that results from any
such privacy-preserving approach. Using tools from information theory, a new
framework is presented that abstracts both the privacy and the utility
requirements of smart meter data. This leads to a novel privacy-utility
tradeoff problem with minimal assumptions that is tractable. Specifically for a
stationary Gaussian Markov model of the electricity load, it is shown that the
optimal utility-and-privacy preserving solution requires filtering out
frequency components that are low in power, and this approach appears to
encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm.
201
Companion modelling to facilitate understanding of grazing land conflict in Sheythimi, Radi, Eastern Bhutan. CPWF PN25
- …
