288 research outputs found
Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces
We study the heat transfer between two parallel metallic semi-infinite media
with a gap in the nanometer-scale range. We show that the near-field radiative
heat flux saturates at distances smaller than the metal skin depth when using a
local dielectric constant and investigate the origin of this effect. The effect
of non-local corrections is analysed using the Lindhard-Mermin and
Boltzmann-Mermin models. We find that local and non-local models yield the same
heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation
observed in a recent experiment as a manifestation of the skin depth and show
that heat is mainly dissipated by eddy currents in metallic bodies.Comment: Version without figures (8 figures in the complete version
Análise integrada de sistemas de produção de tomateiro com base em indicadores edafobiológicos.
A análise integrada de indicadores edafobiológicos ligados ao manejo do solo constitui uma ferramenta importante para estimar níveis de sustentabilidade do agroecossistema, detectando-se pontos críticos para a devida correção de manejo. Essa ferramenta foi empregada na avaliação de sistemas de produção orgânica e convencional de tomate, em cultivo protegido e a campo aberto, no estado de São Paulo. Tomaram-se como referência solos de mata nativa e/ou pastagem natural, dependendo do local de estudo. Em Serra Negra, o solo sob sistema orgânico apresentou maior capacidade de campo e teor de argila dispersa mais baixo, indicativos da estabilidade dos agregados. No sistema convencional observou-se uma elevada condutividade elétrica, evidenciando a alta disponibilidade de sais solúveis. A análise de componentes principais (ACP) permitiu concluir que há maior grau de similaridade entre o solo sob sistema orgânico e aqueles das bases referenciais, com respeito aos indicadores químicos e biológicos. Constatou-se que C org, N total, polissacarídeos, FDA (hidrólise de diacetato de fluoresceína) e atividade enzimática de desidrogenase estão positivamente relacionados com o sistema orgânico, a mata nativa e a pastagem. Em contrapartida, a saturação por bases (V%), pH, teores de Mn, Mg e Ca, bem como a razão de dispersão estão inversamente relacionadas ao manejo orgânico. Já em Araraquara, os resultados da ACP distinguiram as áreas organicamente cultivadas das matas nativas, principalmente, com base nos indicadores biológicos
Distant agricultural landscapes
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The final publication is available at Springer via http://dx.doi.org/10.1007/s11625-014-0278-0This paper examines the relationship between the development of the dominant industrial food system and its associated global economic drivers and the environmental sustainability of agricultural landscapes. It makes the case that the growth of the global industrial food system has encouraged increasingly complex forms of “distance” that separate food both geographically and mentally from the landscapes on which it was produced. This separation between food and its originating landscape poses challenges for the ability of more localized agricultural sustainability initiatives to address some of the broader problems in the global food system. In particular, distance enables certain powerful actors to externalize ecological and social costs, which in turn makes it difficult to link specific global actors to particular biophysical and social impacts felt on local agricultural landscapes. Feedback mechanisms that normally would provide pressure for improved agricultural sustainability are weak because there is a lack of clarity regarding responsibility for outcomes. The paper provides a brief illustration of these dynamics with a closer look at increased financialization in the food system. It shows that new forms of distancing are encouraged by the growing significance of financial markets in global agrifood value chains. This dynamic has a substantial impact on food system outcomes and ultimately complicates efforts to scale up small-scale local agricultural models that are more sustainable.The Trudeau Foundation || Social Sciences and Humanities Research Council of Canad
Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes
Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems
Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic
Aims
Despite multiple studies investigating the environmental controls on CH4 fluxes from arctic tundra ecosystems, the high spatial variability of CH4 emissions is not fully understood. This makes the upscaling of CH4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH4 emission from tundra ecosystems.
Methods
CH4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO2 and CH4 gas analyser.
Results
All sites were found to be sources of CH4, with northern sites (in Barrow) showing similar CH4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH4 emission. Greater vascular plant cover was linked with higher CH4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH4 emission in these tundra ecosystems.
Conclusions
Overall, this study provides an increased understanding of the fine scale spatial controls on CH4 flux, in particular the key role that plant cover and GPP play in enhancing CH4 emissions from tundra soils
Recommended from our members
Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes
Marking their own homework: The pragmatic and moral legitimacy of industry self-regulation
When is industry self-regulation (ISR) a legitimate form of governance? In principle, ISR can serve the interests of participating companies, regulators and other stakeholders. However, in practice, empirical evidence shows that ISR schemes often under-perform, leading to criticism that such schemes are tantamount to firms marking their own homework. In response, this paper explains how current management theory on ISR has failed to separate the pragmatic legitimacy of ISR based on self-interested calculations, from moral legitimacy based on normative approval. The paper traces three families of management theory on ISR and uses these to map the pragmatic and moral legitimacy of ISR schemes. It identifies tensions between the pragmatic and moral legitimacy of ISR schemes, which the current ISR literature does not address, and draws implications for the future theory and practice of ISR
Marketing as a means to transformative social conflict resolution: lessons from transitioning war economies and the Colombian coffee marketing system
Social conflicts are ubiquitous to the human condition and occur throughout markets, marketing processes, and marketing systems.When unchecked or unmitigated, social conflict can have devastating consequences for consumers, marketers, and societies, especially when conflict escalates to war. In this article, the authors offer a systemic analysis of the Colombian war economy, with its conflicted shadow and coping markets, to show how a growing network of fair-trade coffee actors has played a key role in transitioning the country’s war economy into a peace economy. They particularly draw attention to the sources of conflict in this market and highlight four transition mechanisms — i.e., empowerment, communication, community building and regulation — through which marketers can contribute to peacemaking and thus produce mutually beneficial outcomes for consumers and society. The article concludes with a discussion of implications for marketing theory, practice, and public policy
Rescuing Valuable Arctic Vegetation Data for Biodiversity Models, Ecosystem Models and a Panarctic Vegetation Classification
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
- …
