3,791 research outputs found
Engineering analysis and design of a mechanism to simulate a sonic boom
Mechanism simulating vibrational and acoustic properties of sonic boom
Utilization and Application of Business Computing Systems in Corporate Real Estate
This study reports on the utilization of business computing systems by corporate real estate executives. A survey was undertaken to examine four issues: types of property data collected, MIS report generation, hardware/software usage, and decision models and experts employed. NACORE members were surveyed and reported extensive usage of well-known business computing systems (e.g., transaction processing and management information systems), while newer systems (e.g., decision support and expert systems) are just beginning to be introduced into corporate real estate. Empirical analysis revealed differences among industries in the types of reports and property financial data that are maintained.
The Acquisition and Disposition of Real Estate by Corporate Executives: A Survey
Rising property values as well as corporate restructuring have given real estate greater importance in corporate asset management. Previous research has examined the capital budgeting procedures of corporations and institutional investors for real estate. However, these studies have not examined both the capital budgeting and disposition criteria used by service, retail, and manufacturing corporations for real estate. This study surveys the acquisition and disposition rules used by executives as well as the use of leasing. This survey covers the size of real estate investments, use of real property leasing, use of real estate sale/leaseback arrangements and the real estate asset acquisition and disposition criteria of corporations.
Mopra CO Observations of the Bubble HII Region RCW120
We use the Mopra radio telescope to test for expansion of the molecular gas
associated with the bubble HII region RCW120. A ring, or bubble, morphology is
common for Galactic HII regions, but the three-dimensional geometry of such
objects is still unclear. Detected near- and far-side expansion of the
associated molecular material would be consistent with a three-dimensional
spherical object. We map the transitions of CO,
CO, CO, and CO, and detect emission from all
isotopologues. We do not detect the masing lines of
CHOH at 108.8939 GHz. The strongest CO emission is from the
photodissociation region (PDR), and there is a deficit of emission toward the
bubble interior. We find no evidence for expansion of the molecular material
associated with RCW120 and therefore can make no claims about its geometry. The
lack of detected expansion is roughly in agreement with models for the
time-evolution of an HII region like RCW120, and is consistent with an
expansion speed of . Single-position CO spectra show
signatures of expansion, which underscores the importance of mapped spectra for
such work. Dust temperature enhancements outside the PDR of RCW120 coincide
with a deficit of emission in CO, confirming that these temperature
enhancements are due to holes in the RCW120 PDR. H emission shows that
RCW120 is leaking of the ionizing photons into the interstellar
medium (ISM) through PDR holes at the locations of the temperature
enhancements. H-alpha emission also shows a diffuse "halo" from leaked photons
not associated with discrete holes in the PDR. Overall of all
ionizing photons are leaking into the nearby ISM.Comment: 35 pages, 14 figures. Accepted to Ap
A High-Resolution Atlas of Uranium-Neon in the H Band
We present a high-resolution (R ~ 50 000) atlas of a uranium-neon (U/Ne)
hollow-cathode spectrum in the H-band (1454 nm to 1638 nm) for the calibration
of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously
with a laser-frequency comb spectrum, which we used to provide a first-order
calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using
the recently-published uranium line list of Redman et al. (2011), which is
derived from high-resolution Fourier transform spectrometer measurements. These
two independent calibrations allowed us to easily identify emission lines in
the hollow cathode lamp that do not correspond to known (classified) lines of
either uranium or neon, and to compare the achievable precision of each source.
Our frequency comb precision was limited by modal noise and detector effects,
while the U/Ne precision was limited primarily by the signal-to-noise ratio
(S/N) of the observed emission lines and our ability to model blended lines.
The standard deviation in the dispersion solution residuals from the
S/N-limited U/Ne hollow cathode lamp were 50% larger than the standard
deviation of the dispersion solution residuals from the modal-noise-limited
laser frequency comb. We advocate the use of U/Ne lamps for precision
calibration of near-infrared spectrographs, and this H-band atlas makes these
lamps significantly easier to use for wavelength calibration.Comment: 23 pages, 7 figures, submitted and accepted in ApJSS. Online-only
material to be published online by ApJS
Coordinated thermal and optical observations of Trans-Neptunian object (20000) Varuna from Sierra Nevada
We report on coordinated thermal and optical measurements of trans-Neptunian
object (20000) Varuna obtained in January-February 2002, respectively from the
IRAM 30-m and IAA 1.5 m telescopes. The optical data show a lightcurve with a
period of 3.176+/-0.010 hr, a mean V magnitude of 20.37+/-0.08 and a
0.42+/-0.01 magnitude amplitude. They also tentatively indicate that the
lightcurve is asymmetric and double-peaked. The thermal observations indicate a
1.12+/-0.41 mJy flux, averaged over the object's rotation. Combining the two
datasets, we infer that Varuna has a mean 1060(+180/-220) km diameter and a
mean 0.038(+0.022/-0.010) V geometric albedo, in general agreement with an
earlier determination using the same technique.Comment: Accepted for publication in Astronomy & Astrophysics (7 pages,
including 3 figures
Improved drive current in RF vertical MOSFETS using hydrogen anneal
This letter reports a study on the effect of a hydrogen anneal after silicon pillar etch of surround-gate vertical MOSFETs intended for RF applications. A hydrogen anneal at 800 ?C is shown to give a 30% improvement in the drive current of 120-nm n-channel transistors compared with transistors without the hydrogen anneal. The value of drive current achieved is 250 ?A/?m, which is a record for thick pillar vertical MOSFETs. This improved performance is obtained even though a sacrificial oxidation was performed prior to the hydrogen anneal to smooth the pillar sidewall. The values of subthreshold slope and DIBL are 79 mV/decade and 45 mV/V, respectively, which are significantly better than most values reported in the literature for comparable devices. The H2 anneal is also shown to decrease the OFF-state leakage current by a factor of three
Self-aligned silicidation of surround gate vertical MOSFETs for low cost RF applications
We report for the first time a CMOS-compatible silicidation technology for surround-gate vertical MOSFETs. The technology uses a double spacer comprising a polysilicon spacer for the surround gate and a nitride spacer for silicidation and is successfully integrated with a Fillet Local OXidation (FILOX) process, which thereby delivers low overlap capacitance and high drive-current vertical devices. Silicided 80-nm vertical n-channel devices fabricated using 0.5-?m lithography are compared with nonsilicided devices. A source–drain (S/D) activation anneal of 30 s at 1100 ?C is shown to deliver a channel length of 80 nm, and the silicidation gives a 60% improvement in drive current in comparison with nonsilicided devices. The silicided devices exhibit a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and 60 mV/V for nonsilicided devices. S-parameter measurements on the 80-nm vertical nMOS devices give an fT of 20 GHz, which is approximately two times higher than expected for comparable lateral MOSFETs fabricated using the same 0.5-?m lithography. Issues associated with silicidation down the pillar sidewall are investigated by reducing the activation anneal time to bring the silicided region closer to the p-n junction at the top of the pillar. In this situation, nonlinear transistor turn-on is observed in drain-on-top operation and dramatically degraded drive current in source-on-top operation. This behavior is interpreted using mixed-mode simulations, which show that a Schottky contact is formed around the perimeter of the pillar when the silicided contact penetrates too close to the top S/D junction down the side of the pillar
A near infrared frequency comb for Y+J band astronomical spectroscopy
Radial velocity (RV) surveys supported by high precision wavelength
references (notably ThAr lamps and I2 cells) have successfully identified
hundreds of exoplanets; however, as the search for exoplanets moves to cooler,
lower mass stars, the optimum wave band for observation for these objects moves
into the near infrared (NIR) and new wavelength standards are required. To
address this need we are following up our successful deployment of an H
band(1.45-1.7{\mu}m) laser frequency comb based wavelength reference with a
comb working in the Y and J bands (0.98-1.3{\mu}m). This comb will be optimized
for use with a 50,000 resolution NIR spectrograph such as the Penn State
Habitable Zone Planet Finder. We present design and performance details of the
current Y+J band comb.Comment: Submitted to SPIE, conference proceedings 845
- …
