206 research outputs found

    Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics

    Full text link
    The fluctuations in the Cosmic Microwave Background (CMB) intensity due to the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic contribution. Separating the two components to measure the peculiar velocity of galaxy clusters requires radio and microwave observations at three or more frequencies, and knowledge of the temperature T_e of the intracluster medium weighted by the electron number density. To quantify the systematics of this procedure, we extract a sample of 117 massive clusters at redshift z=0 from an N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3 and Lambda=0.7. Our simulation includes radiative cooling, star formation and the effect of feedback and galactic winds from supernovae. We find that (1) our simulated clusters reproduce the observed scaling relations between X-ray and SZ properties; (2) bulk flows internal to the intracluster medium affect the velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using the X-ray emission weighted temperature, as an estimate of T_e, can overestimate the peculiar velocity by 20-50 per cent, if the microwave observations do not spatially resolve the cluster. For spatially resolved clusters, the assumptions on the spatial distribution of the ICM, required to separate the two SZ components, still produce a velocity overestimate of 10-20 per cent, even with an unbiased measure of T_e. Thanks to the large size of our cluster samples, these results set a robust lower limit of 200 km/s to the systematic errors that will affect upcoming measures of cluster peculiar velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain more recent observational data. Other minor revisions according to referee's comment

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Tularaemia: A challenging zoonosis

    Get PDF
    In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis.This remarkable pathogen, one of the most virulent microorganisms currently known, has been detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology, immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals

    Dynamics of nanoscale droplets on moving surfaces

    Get PDF
    We use molecular dynamics (MD) simulations to investigate the dynamic wetting of nanoscale water droplets on moving surfaces. The density and hydrogen bonding profiles along the direction normal to the surface are reported, and the width of the water depletion layer is evaluated first for droplets on three different static surfaces: silicon, graphite, and a fictitious superhydrophobic surface. The advancing and receding contact angles, and contact angle hysteresis, are then measured as a function of capillary number on smooth moving silicon and graphite surfaces. Our results for the silicon surface show that molecular displacements at the contact line are influenced greatly by interactions with the solid surface and partly by viscous dissipation effects induced through the movement of the surface. For the graphite surface, however, both the advancing and receding contact angles values are close to the static contact angle value and are independent of the capillary number; i.e., viscous dissipation effects are negligible. This finding is in contrast with the wetting dynamics of macroscale water droplets, which show significant dependence on the capillary number

    Stellar polytropes and Navarro-Frenk-White halo models: comparison with observations

    Full text link
    Motivated by the possible conflict between the Navarro-Frenk-White(NFW) model predictions for the dark matter contents of galactic systems and its correlation with baryonic surface density, we will explore an alternative paradigm for the description of dark matter halos. Such an alternative emerges from Tsallis' non-extensive thermodynamics applied to self-gravitating systems and leads to the so-called ``stellar polytrope'' (SP) model. We consider that this could be a better approach to real structures rather than the isothermal model, given the fact that the first one takes into account the non-extensivity of energy and entropy present in these type of systems characterized by long-range interactions. We compare a halo based on the Navarro-Frenk-White (NFW) and one which follows the SP description. Analyzing the dark matter contents estimated by means of global physical parameters of galactic disks, obtained from a sample of actual galaxies, with the ones of the unobserved dark matter halos, we conclude that the SP model is favored over the NFW model in such a comparison.Comment: 21 pages, 4 figures. Accepted for publication in the Journal of Cosmology and Astroparticle Physic

    The fibroblast hormone Endotrophin is a biomarker of mortality in chronic diseases

    Get PDF
    Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PRO[sbnd]C6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PRO[sbnd]C6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N = 15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95 % CI 1.75—2.52) for a 2-fold increase in PRO[sbnd]C6, with some heterogeneity observed between the studies (I2=70 %). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.</p

    Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?

    Get PDF
    There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits

    High-Throughput NMR Assessment of the Tertiary Structure of Food Allergens

    Get PDF
    In vitro component-resolved diagnosis of food allergy requires purified allergens that have to meet high standards of quality. These include the authentication of their conformation, which is relevant for the recognition by specific IgE antibodies from allergic patients. Therefore, highly sensitive and reliable screening methods for the analysis of proteins/allergens are required to assess their structural integrity. In the present study one-dimensional 1H Nuclear Magnetic Resonance (1D 1H-NMR) analysis was adopted for the assessment of overall structural and dynamic properties and authentication of a set of relevant food allergens, including non-specific lipid transfer proteins from apple, peach and hazelnut, 7/8S seed storage globulins from hazelnut and peanut, 11S seed storage globulins from hazelnut and peanut, caseins from cows' and goats' milk and tropomyosin from shrimp.Two sets of 1D 1H-NMR experiments, using 700 MHz and 600 MHz instruments at 298 K were carried out to determine the presence and the extent of tertiary structure. Structural similarity among members of the individual allergen families was also assessed and changes under thermal stress investigated. The nuclear magnetic resonance (NMR) results were compared with structural information available either from the literature, Protein Data Bank entries, or derived from molecular models.1D (1)H-NMR analysis of food allergens allowed their classification into molecules with rigid, extended and ordered tertiary structures, molecules without a rigid tertiary structure and molecules which displayed both features. Differences in thermal stability were also detected. In summary, 1D (1)H-NMR gives insights into molecular fold of proteins and offers an independent method for assessing structural properties of proteins
    corecore