671 research outputs found
Developing Educational Software: a professional tool perspective
The selection, and use of educational software and its impact in schools are still controversial issues. In this paper we present an alternative conceptualisation of educational software based on considering the software as an instrument for teachers’ professional performance. We review previous work in the areas of the design, development and evaluation of educational software and of the process of educational innovation. The review of these four areas converges to demonstrate the need for knowing and considering the context of use of educational software and for understanding users' perspectives about its roles and possibilities and hence supports a consideration a perspective on educational software which sees it as a professional tool for teachers performance of their teaching role
Double optical spring enhancement for gravitational-wave detectors
Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance—which is upshifted from the pendulum frequency due to the so-called optical-spring effect. As an alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in reshaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization
The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents
Aims. The current study explored the nature of problematic (addictive) video gaming and the association with game type, psychosocial health, and substance use. Methods. Data were collected using a paper and pencil survey in the classroom setting. Three samples were aggregated to achieve a total sample of 8478 unique adolescents. Scales included measures of game use, game type, the Video game Addiction Test (VAT), depressive mood, negative self-esteem, loneliness, social anxiety, education performance, and use of cannabis, alcohol and nicotine (smoking). Results. Findings confirmed problematic gaming is most common amongst adolescent gamers who play multiplayer online games. Boys (60%) were more likely to play online games than girls (14%) and problematic gamers were more likely to be boys (5%) than girls (1%). High problematic gamers showed higher scores on depressive mood, loneliness, social anxiety, negative self-esteem, and self-reported lower school performance. Nicotine, alcohol, and cannabis using boys were almost twice more likely to report high PVG than non-users. Conclusions. It appears that online gaming in general is not necessarily associated with problems. However, problematic gamers do seem to play online games more often, and a small subgroup of gamers – specifically boys – showed lower psychosocial functioning and lower grades. Moreover, associations with alcohol, nicotine, and cannabis use are found. It would appear that problematic gaming is an undesirable problem for a small subgroup of gamers. The findings encourage further exploration of the role of psychoactive substance use in problematic gaming
Prevalence and predictors of video game addiction: a study based on a national representative sample of gamers
Video gaming has become a popular leisure activity in many parts of the world, and an increasing number of empirical studies examine the small minority that appears to develop problems as a result of excessive gaming. This study investigated prevalence rates and predictors of video game addiction in a sample of gamers, randomly selected from the National Population Registry of Norway (N =3389). Results showed there were 1.4 % addicted gamers, 7.3 % problem gamers, 3.9 % engaged gamers, and 87.4 % normal gamers. Gender (being male) and age group (being young) were positively associated with addicted-, problem-, and engaged gamers. Place of birth (Africa, Asia, South- and Middle America) were positively associated with addicted- and problem gamers. Video game addiction was negatively associated with conscientiousness and positively associated with neuroticism. Poor psychosomatic health was positively associated with problem- and engaged gaming. These factors provide insight into the field of video game addiction, and may help to provide guidance as to how individuals that are at risk of becoming addicted gamers can be identified
Achieving ground state and enhancing entanglement by recovering information
For cavity-assisted optomechanical cooling experiments, it has been shown in
the literature that the cavity bandwidth needs to be smaller than the
mechanical frequency in order to achieve the quantum ground state of the
mechanical oscillator, which is the so-called resolved-sideband or good-cavity
limit. We provide a new but physically equivalent insight into the origin of
such a limit: that is information loss due to a finite cavity bandwidth. With
an optimal feedback control to recover those information, we can surpass the
resolved-sideband limit and achieve the quantum ground state. Interestingly,
recovering those information can also significantly enhance the optomechanical
entanglement. Especially when the environmental temperature is high, the
entanglement will either exist or vanish critically depending on whether
information is recovered or not, which is a vivid example of a quantum eraser.Comment: 9 figures, 18 page
Elucidating determinants of aerosol composition through particle-type-based receptor modeling
An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to elucidate the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Advanced gravitational wave detectors, currently under construction, are
expected to directly observe gravitational wave signals of astrophysical
origin. The Einstein Telescope, a third-generation gravitational wave detector,
has been proposed in order to fully open up the emerging field of gravitational
wave astronomy. In this article we describe sensitivity models for the Einstein
Telescope and investigate potential limits imposed by fundamental noise
sources. A special focus is set on evaluating the frequency band below 10Hz
where a complex mixture of seismic, gravity gradient, suspension thermal and
radiation pressure noise dominates. We develop the most accurate sensitivity
model, referred to as ET-D, for a third-generation detector so far, including
the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …
