1,363 research outputs found

    Many-body large polaron optical conductivity in SrTi1x_{1-x}Nbx_xO3_3

    Full text link
    Recent experimental data on the optical conductivity of niobium doped SrTiO3_{3} are interpreted in terms of a gas of large polarons with effective coupling constant αeff2\alpha_{eff}\approx2. The {theoretical approach takes into account} many-body effects, the electron-phonon interaction with multiple LO-phonon branches, and the degeneracy and the anisotropy of the Ti t2g_{2g} conduction band. {Based on the Fr\"{o}hlich interaction, the many-body large-polaron theory} provides an interpretation for the essential characteristics, except -- interestingly -- for the unexpectedly large intensity of a peak at 130\sim130 meV, of the observed optical conductivity spectra of SrTi1x_{1-x}Nbx_{x}O3_{3} \textit{without} any adjustment of material parameters.Comment: to appear in Phys. Rev.

    A global disorder of imprinting in the human female germ line

    Get PDF
    Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment

    Development of an approximate method for quantum optical models and their pseudo-Hermicity

    Full text link
    An approximate method is suggested to obtain analytical expressions for the eigenvalues and eigenfunctions of the some quantum optical models. The method is based on the Lie-type transformation of the Hamiltonians. In a particular case it is demonstrated that E×ϵE\times \epsilon Jahn-Teller Hamiltonian can easily be solved within the framework of the suggested approximation. The method presented here is conceptually simple and can easily be extended to the other quantum optical models. We also show that for a purely imaginary coupling the E×ϵE\times \epsilon Hamiltonian becomes non-Hermitian but Pσ0P\sigma _{0}-symmetric. Possible generalization of this approach is outlined.Comment: Paper prepared fo the "3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics" June 2005 Istanbul. To be published in Czechoslovak Journal of Physic

    Polaronic optical absorption in electron-doped and hole-doped cuprates

    Full text link
    Polaronic features similar to those previously observed in the photoinduced spectra of cuprates have been detected in the reflectivity spectra of chemically doped parent compounds of high-critical-temperature superconductors, both nn-type and pp-type. In Nd2_2CuO4y_{4-y} these features, whose intensities depend both on doping and temperature, include local vibrational modes in the far infrared and a broad band centered at \sim 1000 cm1^{-1}. The latter band is produced by the overtones of two (or three) local modes and is well described in terms of a small-polaron model, with a binding energy of about 500 cm1^{-1}. Most of the above infrared features are shown to survive in the metallic phase of Nd2x_{2-x}Cex_xCu04y_{4-y}, Bi2_2Sr2_2CuO6_6, and YBa2_2Cu3_3O7y_{7-y}, where they appear as extra-Drude peaks. The occurrence of polarons is attributed to local modes strongly coupled to carriers, as shown by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be faxed upon reques

    Conductivity of CuO3_3-Chains: Disorder versus Electron-Phonon Coupling

    Full text link
    The optical conductivity of the CuO3_3-chains, a subsystem of the 1-2-3 materials, is dominated by a broad peak in the mid-infrared (ω0.2\omega \approx 0.2eV), and a slowly falling high-frequency tail. The 1D tt-JJ-model is proposed as the relevant low-energy Hamiltonian describing the intrinsic electronic structure of the CuO3_3-chains. However, due to charge-spin decoupling, this model alone cannot reproduce the observed \sw. We consider two additional scattering mechanisms: (i) Disregarding the not so crucial spin degrees of freedom, the inclusion of strong potential disorder yields excellent agreement with experiment, but suffers from the unreasonable value of the disorder strength necessary for the fit. (ii) Moderately strong polaronic electron-phonon coupling to the mode involving Cu(1)-O(4) stretching, can be modeled within a 1D Holstein Hamiltonian of spinless fermions. Using a variational approximation for the phonon Hilbert space, we diagonalize the Hamiltonian exactly on finite lattices. As a result of the experimental hole density 1/2\approx 1/2, the chains can exhibit strong charge-density-wave (CDW) correlations, driven by phonon-mediated polaron-polaron interactions. In the vicinity of half filling, charge motion is identified as arising from moving domain walls, \ie defects in the CDW. Incorporating the effect of vacancy disorder by choosing open boundary conditions, good agreement with the experimental spectra is found. In particular, a high-frequency tail arises as a consequence of the polaron-polaron interactions.Comment: 42 pages, ETH-TH/93-31 (Postscript

    Time evolution of the Rabi Hamiltonian from the unexcited vacuum

    Get PDF
    The Rabi Hamiltonian describes a single mode of electromagnetic radiation interacting with a two-level atom. Using the coupled cluster method, we investigate the time evolution of this system from an initially empty field mode and an unexcited atom. We give results for the atomic inversion and field occupation, and find that the virtual processes cause the field to be squeezed. No anti-bunching occurs.Comment: 25 pages, 8 figures, RevTe

    Infrared response of ordered polarons in layered perovskites

    Full text link
    We report on the infrared absorption spectra of three oxides where charged superlattices have been recently observed in diffraction experiments. In La1.67_{1.67}Sr0.33_{0.33}NiO4_4, polaron localization is found to suppress the low-energy conductivity through the opening of a gap and to split the E2uE_{2u}-A2uA_{2u} vibrational manifold of the oxygen octahedra. Similar effects are detected in Sr1.5_{1.5}La0.5_{0.5}MnO4_4 and in La2_2NiO4+y_{4+y}, with peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid Commun.), 1 Oct. 1996. The figures will be faxed upon request. E-mail:[email protected] Fax: +39-6-446315

    Optical absorption and single-particle excitations in the 2D Holstein t-J model

    Full text link
    To discuss the interplay of electronic and lattice degrees of freedom in systems with strong Coulomb correlations we have performed an extensive numerical study of the two-dimensional Holstein t-J model. The model describes the interaction of holes, doped in a quantum antiferromagnet, with a dispersionsless optical phonon mode. We apply finite-lattice Lanczos diagonalization, combined with a well-controlled phonon Hilbert space truncation, to the Hamiltonian. The focus is on the dynamical properties. In particular we have evaluated the single-particle spectral function and the optical conductivity for characteristic hole-phonon couplings, spin exchange interactions and phonon frequencies. The results are used to analyze the formation of hole polarons in great detail. Links with experiments on layered perovskites are made. Supplementary we compare the Chebyshev recursion and maximum entropy algorithms, used for calculating spectral functions, with standard Lanczos methods.Comment: 32 pages, 12 figures, submitted to Phys. Rev.

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
    corecore