1,322 research outputs found
Biochemical processes in sagebrush ecosystems: Interactions with terrain
The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state
Detecting Planets Around Very Low Mass Stars with the Radial Velocity Method
The detection of planets around very low-mass stars with the radial velocity
method is hampered by the fact that these stars are very faint at optical
wavelengths where the most high-precision spectrometers operate. We investigate
the precision that can be achieved in radial velocity measurements of low mass
stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the
precision achievable in the optical. For early-M stars, radial velocity
measurements in the nIR offer no or only marginal advantage in comparison to
optical measurements. Although they emit more flux in the nIR, the richness of
spectral features in the optical outweighs the flux difference. We find that
nIR measurement can be as precise than optical measurements in stars of
spectral type ~M4, and from there the nIR gains in precision towards cooler
objects. We studied potential calibration strategies in the nIR finding that a
stable spectrograph with a ThAr calibration can offer enough wavelength
stability for m/s precision. Furthermore, we simulate the wavelength-dependent
influence of activity (cool spots) on radial velocity measurements from optical
to nIR wavelengths. Our spot simulations reveal that the radial velocity jitter
does not decrease as dramatically towards longer wavelengths as often thought.
The jitter strongly depends on the details of the spots, i.e., on spot
temperature and the spectral appearance of the spot. Forthcoming nIR
spectrographs will allow the search for planets with a particular advantage in
mid- and late-M stars. Activity will remain an issue, but simultaneous
observations at optical and nIR wavelengths can provide strong constraints on
spot properties in active stars.Comment: accepted by ApJ, v2 accepted revision with new precision
calculations, abstract abride
What controls the magnetic geometry of M dwarfs?
Context: observations of rapidly rotating M dwarfs show a broad variety of
large-scale magnetic fields encompassing dipole-dominated and multipolar
geometries. In dynamo models, the relative importance of inertia in the force
balance -- quantified by the local Rossby number -- is known to have a strong
impact on the magnetic field geometry. Aims: we aim to assess the relevance of
the local Rossby number in controlling the large-scale magnetic field geometry
of M dwarfs. Methods: we explore the similarities between anelastic dynamo
models in spherical shells and observations of active M-dwarfs, focusing on
field geometries derived from spectropolarimetric studies. To do so, we
construct observation-based quantities aimed to reflect the diagnostic
parameters employed in numerical models. Results: the transition between
dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is
tentatively attributed to a Rossby number threshold. We interpret late M dwarfs
magnetism to result from a dynamo bistability occurring at low Rossby number.
By analogy with numerical models, we expect different amplitudes of
differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&
What controls the large-scale magnetic fields of M dwarfs?
Observations of active M dwarfs show a broad variety of large-scale magnetic
fields encompassing dipole-dominated and multipolar geometries. We detail the
analogy between some anelastic dynamo simulations and spectropolarimetric
observations of 23 M stars. In numerical models, the relative contribution of
inertia and Coriolis force in the global force balance -estimated by the
so-called local Rossby number- is known to have a strong impact on the magnetic
field geometry. We discuss the relevance of this parameter in setting the
large-scale magnetic field of M dwarfs.Comment: 4 pages, 3 figures, conference proceeding, IAUS 302 'Magnetic Fields
Throughout the Stellar Evolution', (26-30 Aug 2013, Biarritz, France
The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell
Radial velocities measured from near-infrared spectra are a potentially
powerful tool to search for planets around cool stars and sub-stellar objects.
However, no technique currently exists that yields near-infrared radial
velocity precision comparable to that routinely obtained in the visible. We
describe a method for measuring high-precision relative radial velocities of
these stars from K-band spectra. The method makes use of a glass cell filled
with ammonia gas to calibrate the spectrograph response similar to the "iodine
cell" technique that has been used very successfully in the visible. Stellar
spectra are obtained through the ammonia cell and modeled as the product of a
Doppler-shifted template spectrum of the object and a spectrum of the cell,
convolved with a variable instrumental profile model. A complicating factor is
that a significant number of telluric absorption lines are present in the
spectral regions containing useful stellar and ammonia lines. The telluric
lines are modeled simultaneously as well using spectrum synthesis with a
time-resolved model of the atmosphere over the observatory. The free parameters
in the complete model are the wavelength scale of the spectrum, the
instrumental profile, adjustments to the water and methane abundances in the
atmospheric model, telluric spectrum Doppler shift, and stellar Doppler shift.
Tests of the method based on the analysis of hundreds of spectra obtained for
late M dwarfs over six months demonstrate that precisions of ~5 m/s are
obtainable over long timescales, and precisions of better than 3 m/s can be
obtained over timescales up to a week. The obtained precision is comparable to
the predicted photon-limited errors, but primarily limited over long timescales
by the imperfect modeling of the telluric lines.Comment: Accepted for publication in Ap
Solar Magnetic Field Reversals and the Role of Dynamo Families
The variable magnetic field of the solar photosphere exhibits periodic
reversals as a result of dynamo activity occurring within the solar interior.
We decompose the surface field as observed by both the Wilcox Solar Observatory
and the Michelson Doppler Imager into its harmonic constituents, and present
the time evolution of the mode coefficients for the past three sunspot cycles.
The interplay between the various modes is then interpreted from the
perspective of general dynamo theory, where the coupling between the primary
and secondary families of modes is found to correlate with large-scale polarity
reversals for many examples of cyclic dynamos. Mean-field dynamos based on the
solar parameter regime are then used to explore how such couplings may result
in the various long-term trends in the surface magnetic field observed to occur
in the solar case.Comment: Accepted to ApJ; comments/corrections to this article are welcome via
e-mail, even after publicatio
A Survey for Spectroscopic Binaries Among Very Low-Mass Stars
We report on the results of a survey for radial velocity variability in a
heterogeneous sample of very low-mass stars and brown dwarfs. One
distinguishing characteristic of the survey is its timespan, which allows an
overlap between spectroscopic binaries and those which can be found by high
angular-resolution imaging. We are able to place a new constraint on the total
binary fraction in these objects, which suggests that they are more likely the
result of extending the same processes at work at higher masses into this mass
range, rather than a distinct mode of formation. Our basic result is that there
are out of 53, or % spectroscopic binaries in the
separation range 0-6 AU, nearly as many as resolved binaries. This leads to an
estimate of an upper limit of % for the binary fraction of VLM
objects (it is an upper limit because of the possible overlap between the
spectroscopic and resolved populations). A reasonable estimate for the very
low-mass binary fraction is %. We consider several possible separation
and frequency distributions, including the same one as found for GK stars, a
compressed version of that, a version of the compressed distribution truncated
at 15 AU, and a theoretical distribution which considers the evaporation of
small-N clusters. We conclude that the latter two bracket the observations,
which may mean that these systems form with intrinsically smaller separations
due to their smaller mass, and then are truncated due to their smaller binding
energy. We do not find support for the ``ejection hypothesis'' as their
dominant mode of formation, particularly in view of the similarity in the total
binary fraction compared with slightly more massive stars, and the difficulty
this mechanism has in producing numerous binary systems.Comment: 36 pages, accepted for publication in AJ, abstract shortened for
arXiv.or
Search for radial velocity variations in eight M-dwarfs with NIRSPEC/Keck II
Context. Radial velocity (RV) measurements from near-infrared spectra have
become a potentially powerful tool to search for planets around cool stars and
sub-stellar objects. As part of a large survey to characterize M-dwarfs using
NIRSPEC at Keck II, we obtained spectra of eight late M-dwarfs (spectral types
M5.0-M8.0) during two or more observing epochs per target. These spectra were
taken with intermediate spectral resolving powers (R \sim 20,000) in the
J-band.
Aims. We search for relative radial velocity variability in these late
M-dwarfs and test the NIRSPEC capability of detecting short period brown dwarf
and massive planetary companions around low-mass stars in the J-band (\approx
1.25 micron). Additionally, we reanalyzed the data of the M8-type star vB10
(one of our targets) presented in Zapatero Osorio et al. (2009), which were
obtained with the same instrumentation as our data.
Methods. [...]
Results. For the entire M-dwarf sample, we do not find any evidence of
relative RV variations induced by a short period brown dwarf or massive
planetary companion. The typical RV precision of the measurements is between
180 and 300 m/s, which is sufficient to detect hot Neptunes around M-dwarfs.
Also, we find that the spurious RV shift in Zapatero et al. (2009) of the star
VB10 was caused by asymmetries in the instrumental profile between different
observing epochs, which were not taken into account in their analysis.Comment: A&A, 7 pages, 5 figure
Intermediate Resolution Near-Infrared Spectroscopy of 36 late-M Dwarfs
We present observations of 36 late-M dwarfs obtained with the KeckII/NIRSPEC
in the J-band at a resolution of \sim20,000. We have measured projected
rotational velocities, absolute radial velocities, and pseudo-equivalent widths
of atomic lines. 12 of our targets did not have previous measurements in the
literature.
For the other 24 targets, we confirm previously reported measurements. We
find that 13 stars from our sample have vsini below our measurement threshold
(12 km/s) whereas four of our targets are fast rotators (vsini > 30 km/s). As
fast rotation causes spectral features to be washed out, stars with low
projected rotational velocities are sought for radial velocity surveys.
At our intermediate spectral resolution we have confirmed the identification
of neutral atomic lines reported in Mclean et al. 2007. We also calculated
pseudo-equivalent widths (p-EW) of 12 atomic lines. Our results confirm that
the p-EW of K I lines are strongly dependent on spectral types. We observe that
the p-EW of Fe I and Mn I lines remain fairly constant with later spectral
type. We suggest that those lines are particularly suitable for deriving
metallicities for late-M dwarfs.Comment: accepted in Astronomical Journal. 30 pages, 7 tables, and 7 figure
- …
