1,286 research outputs found
Adiponectin: Serum-saliva associations and relations with oral and systemic markers of inflammation
This study addresses gaps in our understanding about the validity and utility of using salivary adiponectin to
index serum adiponectin levels. Matched blood and saliva samples were collected on a single occasion from
healthy adults (n=99; age 18–36 years, 53% male). Serum and saliva was assayed for adiponectin and
inflammatory cytokines (IL-1β, IL-6, IL-8, TNFα), and saliva was also assayed for markers of blood
contamination (transferrin), total protein (salivary flow rate) and matrix metalloproteinase-8 (MMP-8). We
examined the extent to which salivary adiponectin was associated with serum adiponectin, and the influence of
potential confounders on the serum-saliva correlation, including age, sex, body mass index, and markers of
inflammation, oral health, salivary blood contamination, and flow rate. Findings revealed a modest serum-saliva
association for adiponectin, and strong positive associations between salivary adiponectin and salivary levels of
inflammatory cytokines, MMP-8, transferrin, and total protein. By contrast, salivary adiponectin was not related
to serum levels of inflammatory activity. The magnitude of the serum-saliva association was strengthened when
controlling for total protein in saliva, blood leakage into oral fluid, salivary inflammatory cytokines, and MMP-8.
The pattern of findings extends our understanding of salivary adiponectin and its potential use as an index of
circulating adiponectin levels
Free-induction-decay magnetometer based on a microfabricated Cs vapor cell
We describe an optically pumped Cs magnetometer containing a 1.5 mm thick microfabricated vapor cell with nitrogen buffer gas operating in a free-induction-decay (FID) configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarize the atomic sample however, synchronous modulation of the light field actively drives the precession and maximizes the induced spin coherence. Both amplitude and frequency modulation have been implemented with noise floors of 3 pT / √ Hz and 16 pT / √ Hz respectively within the Nyquist limited bandwidth of 500 Hz
Scalable Group Level Probabilistic Sparse Factor Analysis
Many data-driven approaches exist to extract neural representations of
functional magnetic resonance imaging (fMRI) data, but most of them lack a
proper probabilistic formulation. We propose a group level scalable
probabilistic sparse factor analysis (psFA) allowing spatially sparse maps,
component pruning using automatic relevance determination (ARD) and subject
specific heteroscedastic spatial noise modeling. For task-based and resting
state fMRI, we show that the sparsity constraint gives rise to components
similar to those obtained by group independent component analysis. The noise
modeling shows that noise is reduced in areas typically associated with
activation by the experimental design. The psFA model identifies sparse
components and the probabilistic setting provides a natural way to handle
parameter uncertainties. The variational Bayesian framework easily extends to
more complex noise models than the presently considered.Comment: 10 pages plus 5 pages appendix, Submitted to ICASSP 1
Experimental design for assessment of electrokinetically enhanced delivery of lactate and bacteria in 1,2-cis-dichloroethylene contaminated limestone
Frictional quantum decoherence
The dynamics associated with a measurement-based master equation for quantum
Brownian motion are investigated. A scheme for obtaining time evolution from
general initial conditions is derived. This is applied to analyze dissipation
and decoherence in the evolution of both a Gaussian and a Schr\"{o}dinger cat
initial state. Dependence on the diffusive terms present in the master equation
is discussed with reference to both the coordinate and momentum
representations.Comment: 18 pages, 7 figure
Low-loss criterion and effective area considerations for photonic crystal fibers
We study the class of endlessly single-mode all-silica photonic crystal
fibers with a triangular air-hole cladding. We consider the sensibility to
longitudinal nonuniformities and the consequences and limitations for realizing
low-loss large-mode area photonic crystal fibers. We also discuss the
dominating scattering mechanism and experimentally we confirm that both macro
and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic
An Atom Laser with a cw Output Coupler
We demonstrate a continuous output coupler for magnetically trapped atoms.
Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is
continuously extracted from a Bose- Einstein condensate. The intensity and
kinetic energy of the output beam of this atom laser are controlled by a weak
rf-field that induces spin flips between trapped and untrapped states.
Furthermore, the output coupler is used to perform a spectroscopic measurement
of the condensate, which reveals the spatial distribution of the magnetically
trapped condensate and allows manipulation of the condensate on a micrometer
scale.Comment: 4 pages, 4 figure
Moral enhancement: do means matter morally?
One of the reasons why moral enhancement may be controversial, is because the advantages of moral enhancement may fall upon society rather than on those who are enhanced. If directed at individuals with certain counter-moral traits it may have direct societal benefits by lowering immoral behavior and increasing public safety, but it is not directly clear if this also benefits the individual in question. In this paper, we will discuss what we consider to be moral enhancement, how different means may be used to achieve it and whether the means we employ to reach moral enhancement matter morally. Are certain means to achieve moral enhancement wrong in themselves? Are certain means to achieve moral enhancement better than others, and if so, why? More specifically, we will investigate whether the difference between direct and indirect moral enhancement matters morally. Is it the case that indirect means are morally preferable to direct means of moral enhancement and can we indeed pinpoint relevant intrinsic, moral differences between both? We argue that the distinction between direct and indirect means is indeed morally relevant, but only insofar as it tracks an underlying distinction between active and passive interventions. Although passive interventions can be ethical provided specific safeguards are put in place, these interventions exhibit a greater potential to compromise autonomy and disrupt identity
Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study
Can spacetime curvature induced corrections to Lamb shift be observable?
The Lamb shift results from the coupling of an atom to vacuum fluctuations of
quantum fields, so corrections are expected to arise when the spacetime is
curved since the vacuum fluctuations are modified by the presence of spacetime
curvature. Here, we calculate the curvature-induced correction to the Lamb
shift outside a spherically symmetric object and demonstrate that this
correction can be remarkably significant outside a compact massive
astrophysical body. For instance, for a neutron star or a stellar mass black
hole, the correction is 25% at a radial distance of ,
16% at and as large as 1.6% even at , where is
the mass of the object, the Newtonian constant, and the speed of light.
In principle, we can look at the spectra from a distant compact super-massive
body to find such corrections. Therefore, our results suggest a possible way of
detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more
discussions added, version to be published in JHE
- …
