82 research outputs found
Metal alloys, matrix inclusions and manufacturing techniques of Moinhos de Golas collection (North Portugal): a study by micro-EDXRF, SEM–EDS, optical microscopy and X-ray radiography
"Article:820"A collection of 35 metallic artefacts comprising
various typologies, some of which can be attributed to the
Bronze Age and others to later periods, were studied to
provide detailed information on elemental composition,
manufacturing techniques and preservation state. Elemental
analysis by micro-EDXRF and SEM–EDS was performed
to investigate the use of different alloys and to
study the presence of microstructural heterogeneities, as
inclusions. X-ray radiography, optical microscopy and
SEM–EDS were used to investigate manufacturing techniques
and degradation features. Results showed that most
of the artefacts were produced in a binary bronze alloy
(Cu–Sn) with 10–15 wt% Sn and a low concentration of
impurities. Other artefacts were produced in copper or in
brass, the latest with varying contents of Zn, Sn and Pb. A
variety of inclusions in the metal matrices were also found,
some related to specific types of alloys, as (Cu–Ni)S2 in
coppers, or ZnS in brasses. Microstructural observations
revealed that the majority of the artefacts were subjected to
cycles of thermomechanical processing after casting, being
evident that among some artefacts different parts were
subjected to distinct treatments. The radiographic images
revealed structural heterogeneities related to local corrosion
processes and fissures that seem to have developed in
wear-tension zones, as in the handle of some daggers.
Radiographic images were also useful to detect the use of
different materials in one particular brass artefact, revealing
the presence of a possible Cu–Sn solder.This work was funded by FEDER funds through
the COMPETE 2020 Programme and National Funds through FCT—
Fundação para a Ciência e a Tecnologia under the project UID/CTM/
50025/2013 to CENIMAT/I3N. C2
TN/IST authors gratefully
acknowledge the FCT support through the UID/Multi/04349/2013
project. EF acknowledges FCT for the grant SFRH/BPD/97360/2013.
JF acknowledge FCT for the grant SFRH/BD/65143/2009. Part of this
project has been done in the framework of the FCT project ENARDAS
(PTDC/HISARQ/112983/2009).info:eu-repo/semantics/publishedVersio
LA CORROSIONE ATMOSFERICA DEI MONUMENTI IN BRONZO: PROVE DI INVECCHIAMENTO ARTIFICIALE
I monumenti in bronzo esposti all’aperto risentono di diverse tipologie di degrado, in conseguenza delle diversecondizioni di esposizione all’ambiente e, in particolare, alla pioggia.Allo scopo di studiare la correlazione causa-effetto tra l’evoluzione della corrosione di un bronzo e la suadifferente esposizione alla pioggia (pioggia stagnante o pioggia lisciviante), è stato intrapreso un lavoro di ricercamultidisciplinare. Nel presente lavoro vengono quindi riportati i risultati delle prove eseguite sul bronzo quaternarioG85, largamente impiegato per fusioni artistiche. La soluzione aggressiva impiegata è stata formulata sulla base dellecaratteristiche di piogge reali raccolte nell’area urbana di Bologna. La condizione di stagnazione è stata riprodottamediante un dispositivo wet&dry specificamente progettato e realizzato, in cui il bronzo viene ciclicamente immersonella pioggia sintetica, che viene periodicamente analizzata per valutare l’evoluzione del pH e della concentrazionedi metalli dissolti. Parallelamente, anche i materiali esposti vengono caratterizzati mediante misure gravimetriche,VPSEM+EDS+micro-Raman e XRD. La condizione di pioggia battente (run-off) viene invece simulata medianteun apposito dispositivo di dropping, che intende riprodurre, in condizioni controllate, l’azione della pioggia suuna superficie inclinata a piacere. Anche in questo caso sia le superfici esposte che la soluzione lisciviante vengonoanalizzate parallelamente nel corso dell’esposizione.L’analisi dei dati ottenuti ha permesso la formulazione di modelli interpretativi per i processi di corrosione delbronzo quaternario; inoltre, il confronto con casi reali di corrosione di monumenti bronzei ha consentito di stimarel’affidabilità dei modelli proposti e la loro efficacia a fini diagnostici e conservativi
Ancient coins: cluster analysis applied to find a correlation between corrosion process and burial soil characteristics
Although it is well known that any material degrades faster when exposed to an aggressive environment as well as that "aggressive" cannot be univocally defined as depending also on the chemical-physical characteristics of material, few researches on the identification of the most significant parameters influencing the corrosion of metallic object are available
FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes
[EN] A set of ancient Antoninianus silver coins, dating back between 249 and 274¿A.D. and minted in Rome, Galliae, Orient and Ticinum, have been characterized. We use, for the first time, a combination of nano-invasive (focused ion beam-field emission scanning electron microscopy-X-ray microanalysis (FIB-FESEM-EDX), voltammetry of microparticles (VIMP)) and destructive techniques (scanning electron microscopy (SEM-EDX) and electron microprobe analysis (EMPA)) along with non-invasive, i.e., micro-Raman spectroscopy. The results revealed that, contrary to the extended belief, a complex Ag-Cu-Pb-Sn alloy was used. The use of alloys was common in the flourishing years of the Roman Empire. In the prosperous periods, Romans produced Ag-Cu alloys with relatively high silver content for the manufacture of both the external layers and inner nucleus of coins. This study also revealed that, although surface silvering processes were applied in different periods of crisis under the reign of Antoninii, even during crisis, Romans produced Antoninianus of high quality. Moreover, a first attempt to improve the silvering procedure using Hg-Ag amalgam has been identified.Financial support was provided by Sapienza University of Rome (Ateneo funding, 2014 15) and Spanish
projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported with Ministerio de
Economía, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, as
well as project CTQ2017-85317-C2-1-P supported with funds from, MINECO, ERDF and Agencia Estatal de
Investigación (AEI). PhD grants of the Department of Earth Sciences, Sapienza University of Rome, are gratefully
acknowledgedDomenech Carbo, MT.; Di Turo, F.; Montoya, N.; Catalli, F.; Doménech Carbó, A.; De Vito, C. (2018). FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-28990-xS8Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T. & Piquero-Cilla, J. Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchem. J. 130, 47–55 (2017).Di Turo, F. et al. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 955, 36–47 (2017).Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Anal. Chem. 83, 5639–5644 (2011).Giumlia-Mair, A. et al. Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology 25(5), 245–261 (2010).Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage 7, 1–12 (2006).Campbell, W. Greek and Roman plated coins, Numismatics Notes and Monographs 57, American Numismatic Society, New York (1933).Kallithrakas-Kontos, N., Katsanos, A. A. & Touratsoglou, J. Trace element analysis of Alexander the Great’s silver tetradrachms minted in Macedonia, Nuclear Instruments and Methods in Physics. Research B 171, 342–349 (2000).Catalli, F. Numismatica greca e romana. (Libreria dello Stato, 2003).Cope, L. H. The Metallurgical development of the Roman Imperial Coinage during the first five centuries. (Liverpool, 1974).Scriptores Historiae Augustae. Historia Augusta. (The Perfect Library, 2014).Vlachou-Mogire, C., Stern, B. & McDonnell, J. G. The application of LA-ICP-MS in the examination of the thin plating layers found in late Roman coins. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 265, 558–568 (2007).Keturakis, C. J. et al. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Appl. Surf. Sci. 376, 241–251 (2016).Ingo, G. M. et al. Roman sophisticated surface modification methods to manufacture silver counterfeited coins. Appl. Surf. Sci. 1–11, https://doi.org/10.1016/j.apsusc.2017.01.101 (2017).La Niece, S. In: La Niece S. & Craddock, P. (Eds), Metal, Plating and Platination, Butterworth–Heinemann, London, 1993, p. 201.Anheuser, K. & France, P. Silver plating technology of the late 3rd century Roman coinage. Historical Metallurgy 36(1), 17–23 (2002).Anheuser, K. & Northover, P. Silver plating on Roman and Celtic coins from Britain– A technical study. The British Numismatic Journal 64, 22–32 (1994).Anheuser, K. Where is all the amalgam silvering? Materials Issues1996 in Art and Archaeology - V proceedings, Boston.Beck, L. et al. In NIM 269, 2011 and in Counterfeit coinage of the Holy Roman Empire in the 16th century: silvering process and archaeometallurgical replications, Archaeometallurgy in Europe III.Deraisme, A., Beck, L., Pilon, F. & Barrandon, J. N. A study of the silvering process of the Gallo-Roman coins forged during the third century AD. Archaeometry 48, 469–480 (2006).Giumlia-Mair, A. On surface analysis and archaeometallurgy. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 239, 35–43 (2005).Tate, J. Some problems in analysing museum material by nondestructive surface sensitive techniques. Nuclear Inst. and Methods in Physics Research, B, 14 (1), pp. 20–23 (1986).Beck, L., Bosonnet, S., Réveillon, S., Eliot, D. & Pilon, F. Silver surface enrichment of silver-copper alloys: A limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 226, 153–162 (2004).Pardini, L. et al. X-ray fluorescence and laser-induced breakdown spectroscopy analysis of Roman silver denarii. Spectrochim. Acta - Part B At. Spectrosc. 74–75, 156–161 (2012).Klockenkämper, R., Bubert, H. & Hasler, K. Detection of near-surface silver enrichment on Roman imperial silver coins by x-ray spectral analysis. Archaeometry 41, 311–320 (1999).Ponting, M., Evans, J. A. & Pashley, V. Fingerprinting of roman mints using laser-amblation MC-ICP-MS lead isotope analysis.Del Hoyo-Meléndez, J. M. et al. Micro-XRF analysis of silver coins from medieval Poland. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 349, 6–16 (2015).Cesare Brandi. Il restauro. Teoria e pratica (1939–1986). (Editori Riuniti, 2009).Barberio, M., Veltri, S., Scisciò, M. & Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Sci. Rep. 7, 40415 (2017).Linke, R., Sehreiner, M., Demortier, G., Alram, M. & Winter, H. Non-Destructive Microanalysis of Cultural Heritage Materials. Comprehensive Analytical Chemistry 42, (Elsevier, 2004).Łojewska, J. et al. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Sci. Rep. 7, 46236 (2017).Meulebroeck, W., Wouters, H., Nys, K. & Thienpont, H. Authenticity screening of stained glass windows using optical spectroscopy. Nat. Sci. Reports 6 37726, 1–10 (2016).Martina, I., Wiesinger, R. & Schreiner, M. Micro-Raman Characterisation of Silver Corrosion Products: Instrumental Set Up and Reference. e-Preservation. Sci. Rep 9, 1–8 (2012).Rizzo, F. et al. Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A. D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchem. J. 97, 286–290 (2011).Carl, M. & Young, M. L. Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchem. J. 126, 307–315 (2016).Cepriá, G., Abadías, O., Pérez-Arantegui, J. & Castillo, J. R. Electrochemical Behavior of Silver-Copper Alloys in Voltammetry of Microparticles: A Simple Method for Screening Purposes. Electroanalysis 13, 477–483 (2001).Capelo, S., Homem, P. M., Cavalheiro, J. & Fonseca, I. T. E. Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J. Solid State Electrochem. 17, 223–234 (2013).Doménech-Carbó, A. et al. Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Sci. Int. 247, 79–88 (2015).Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis 23, 1391–1400 (2011).Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C. & Lee, Y. Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta1 69, 50–56 (2017).Ager, F. J. et al. Combining XRF and GRT for the analysis of ancient silver coins. Microchem. J. 126, 149–154 (2016).Fawcett, T., Blanton, J., Blanton, T., Arias, L. & Suscavage, T. Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century. Powder Diffraction, 1–10.Salvemini, F. et al. Neutron tomographic analysis: Material characterization of silver and electrum coins from the 6th and 5th centuries B.C. Mater. Charact. 118, 175–185 (2016).Ashkenazi, D., Gitler, H., Stern, A. & Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 7, 40659 (2017).Romano, F. P., Garraffo, S., Pappalardo, L. & Rizzo, F. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques. Spectrochim. Acta - Part B At. Spectrosc. 73, 13–19 (2012).Ingo, G. M. et al. Ancient Mercury-Based Plating Methods: Combined Use of Surface Analytical Techniques for the Study of Manufacturing Process and Degradation Phenomena. Accounts of Chemical Research 46(11), 2365–2375.Pouchou, J. L. & Pichoir, F.¨PAP¨ (ϕ–ρ–Z) procedure for improved quantitative microanalysis, in: Armstrong, J. T. (Ed.), Microbeam Analysis, San Francisco Press, San Francisco, pp. 104–106 (1985)
Non-destructive characterization of archeological Cu-based artifacts from the early metallurgy of southern Portugal
The characterization of Sn‐based corrosion products in ancient bronzes: a Raman approach
- …
