927 research outputs found

    Time-symmetric quantization in spacetimes with event horizons

    Get PDF
    The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.Comment: 9 page

    Origin of neutrino masses at the LHC: Delta L = 2 effective operators and their ultraviolet completions

    Full text link
    Neutrino masses and mixings can be generated in many different ways, with some of these scenarios featuring new physics at energy scales relevant for Large Hadron Collider searches. A systematic approach to constructing a large class of models for Majorana neutrinos may be founded upon a list of gauge-invariant effective operators -- formed from quarks, leptons and the Higgs doublet -- that violate lepton-number conservation by two units. By opening up these operators in all possible ways consistent with some minimality assumptions, a complete catalogue of a class of minimal radiative neutrino mass models may be produced. In this paper we present an analysis of Feynman diagram topologies relevant for the ultra-violet completions of these effective operators and collect these into a simple recipe that can be used to generate radiative neutrino mass models. Since high mass-dimension effective operators are suppressed by powers of the scale of new physics, many of the resulting models can be meaningfully tested at the Large Hadron Collider.Comment: 32 pages, 15 figures. v2: Minor changes: added discussion about the scope of the analysis, added referenc

    A Search for Dark Matter Annihilation in Galaxy Groups

    Get PDF
    We use 413 weeks of publicly-available Fermi\textit{Fermi} Pass 8 gamma-ray data, combined with recently-developed galaxy group catalogs, to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the JJ-factors and associated uncertainties for hundreds of galaxy groups within a redshift range z0.03z \lesssim 0.03. We employ a conservative substructure boost-factor model, which only enhances the sensitivity by an O(1)\mathcal{O}(1) factor. No significant evidence for dark matter annihilation is found and we exclude thermal relic cross sections for dark matter masses below \sim30 GeV to 95% confidence in the bbˉb\bar{b} annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension, but do not rule out, the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.Comment: 5+18 pages, 1+14 figures, catalog available at: https://github.com/bsafdi/DMCat; v2 updated to journal version with several updates, results and conclusions unchange

    Multi-Step Cascade Annihilations of Dark Matter and the Galactic Center Excess

    Get PDF
    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect of multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current work, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.Comment: 18 pages, 15 figures, 2 tables; comments welcome. Updated to published versio

    Disentangling Heavy Flavor at Colliders

    Get PDF
    We propose two new analysis strategies for studying charm and beauty quarks at colliders. The first strategy is aimed at testing the kinematics of heavy-flavor quarks within an identified jet. Here, we use the SoftDrop jet-declustering algorithm to identify two subjets within a large-radius jet, using subjet flavor tagging to test the heavy-quark splitting functions of QCD. For subjets containing a J/ψJ / \psi or Υ\Upsilon, this declustering technique can also help probe the mechanism for quarkonium production. The second strategy is aimed at isolating heavy-flavor production from gluon splitting. Here, we introduce a new FlavorCone algorithm, which smoothly interpolates from well-separated heavy-quark jets to the gluon-splitting regime where jets overlap. Because of its excellent ability to identify charm and beauty hadrons, the LHCb detector is ideally suited to pursue these strategies, though similar measurements should also be possible at ATLAS and CMS. Together, these SoftDrop and FlavorCone studies should clarify a number of aspects of heavy-flavor physics at colliders, and provide crucial information needed to improve heavy-flavor modeling in parton-shower generators.Comment: 22 pages, 14 figures; v2: updated figures with new z_tag condition, references and discussion adde

    Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter

    Full text link
    If dark matter inhabits an expanded "hidden sector", annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e+e- and antiprotons) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for such cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter annihilation cross section by up to an order of magnitude in either direction (although the effect can be much smaller). We find that generally the bound from the Fermi dwarfs is most constraining for annihilations to photon-rich final states, while AMS-02 is most constraining for electron and muon final states; however in certain instances the CMB bounds overtake both, due to their approximate independence of the details of the hidden sector cascade. We provide the full set of cascade spectra considered here as publicly available code with examples at http://web.mit.edu/lns/research/CascadeSpectra.html.Comment: Published version. Added analysis on interplay between indirect detection bounds and the Galactic Center GeV excess. Added antiproton ratio bound

    Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    Get PDF
    Several studies indicated the involvement of serotonin-3 (5-HT 3 ) receptors in regulating alcohol- drinking behavior. The objective of this study was to determine the involvement of 5-HT 3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT 3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self- administration. P rats readily acquired ethanol self-administration by the 4 th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self- administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self- administration. Overall, the results of this study suggest that 5-HT 3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT 3 receptor antagonist may alter neuronal circuitry within the posterior VTA

    Testable two-loop radiative neutrino mass model based on an LLQdcQdcLLQd^cQd^c effective operator

    Get PDF
    A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator LiLjQkdcQldcϵikϵjlL^i L^j Q^k d^c Q^l d^c \epsilon_{ik} \epsilon_{jl} that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μeγ{\mu} \to e{\gamma}, μeee\mu \to eee, and μNeN\mu N \to eN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.Comment: 42 pages, 11 figures, typo in Eq. (4.9) as well as wrong chirality structures in Secs. 4.5 and 5.2 corrected, final results unchange

    Resummed Photon Spectra for WIMP Annihilation

    Get PDF
    We construct an effective field theory (EFT) description of the hard photon spectrum for heavy WIMP annihilation. This facilitates precision predictions relevant for line searches, and allows the incorporation of non-trivial energy resolution effects. Our framework combines techniques from non-relativistic EFTs and soft-collinear effective theory (SCET), as well as its multi-scale extensions that have been recently introduced for studying jet substructure. We find a number of interesting features, including the simultaneous presence of SCETI_{\text{I}} and SCETII_{\text{II}} modes, as well as collinear-soft modes at the electroweak scale. We derive a factorization formula that enables both the resummation of the leading large Sudakov double logarithms that appear in the perturbative spectrum, and the inclusion of Sommerfeld enhancement effects. Consistency of this factorization is demonstrated to leading logarithmic order through explicit calculation. Our final result contains both the exclusive and the inclusive limits, thereby providing a unifying description of these two previously-considered approximations. We estimate the impact on experimental sensitivity, focusing for concreteness on an SU(2)W_{W} triplet fermion dark matter - the pure wino - where the strongest constraints are due to a search for gamma-ray lines from the Galactic Center. We find numerically significant corrections compared to previous results, thereby highlighting the importance of accounting for the photon spectrum when interpreting data from current and future indirect detection experiments.Comment: 55+25 pages, 11+2 figures; v3, updated an expression in the appendix to make it applicable at higher order - no impact on the results in this wor
    corecore