1,216 research outputs found
On increasing of the competitiveness of the garment industry in Siberian Federal District on the basis of the industrial cluster establishment
The issue of the development prospects of the Russian economy and the economy of its individual branches in the regions is highly relevant in terms of the increasing crises and economic development challenges. The scope of the study is a garment industry of the Siberian Federal District, which includes 12 subjects, and only six of them develop the garment industry actively. There are the regions of Kemerovo, Novosibirsk, Omsk, Tomsk, Krasnoyarsk Krai and the Republic of Khakassia. The subject matter of the research is the state and prospects of the garment industry of the Siberian Federal District. It also includes the assessment of the garment industry as one of the sub-sectors of the light industry in terms of its competitiveness in the domestic market. The purpose of the comprehensive study is to determine the conditions and factors affecting the development of the industry, as well as to identify its development reserves and competitiveness on the basis of industrial cluster’s generation. The hypothesis of this study is that in the Siberian Federal District, there are a need and reserves to create a cluster of the garment industry. The main methods of the study are the comparative analysis, the expert assessment of the sector in certain regions of the Siberian Federal District, as well as the assessment of possible formation of the industrial cluster in the region. The results of the study are the evaluation of the competitiveness and prospects of the garment industry in Russia and the Siberian Federal District (a low level of development and competitiveness); the evaluation of the development level of the garment industry in the Federal District, which have showed the demand for apparel products from the population and enterprises, as well as the conditions for the provision of clothing manufacture with natural fabrics and synthetic materials, labor resources and research and development achievements; also the justification of the existing potential for development of a sectoral cluster by means of pooling together the productions and economic communications of the Novosibirsk and Omsk regions at the initial stage. The obtained results should be used to strengthen works for the development of regional industrial cluster (with a creation of a working group at the regional governments, the garment industry development programs, and practical measures for its realization), as well as a creation of conditions for stimulation of investment activity of entrepreneurs. The research has confirmed the hypothesis, that in the Siberian Federal District, there are a need and reserves to create a cluster of the garment industry
Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields
The exciton spin dynamics and polarization properties of the related emission
are investigated in colloidal CdSe/CdS dot-in-rod (DiR) and spherical
core/shell nanocrystal (NC) ensembles by magneto-optical photoluminescence (PL)
spectroscopy in magnetic fields up to 15 T. It is shown that the degree of
circular polarization (DCP) of the exciton emission induced by the magnetic
field is affected by the NC geometry as well as the exciton fine structure and
can provide information on nanorod orientation. A theory to describe the
circular and linear polarization properties of the NC emission in magnetic
field is developed. It takes into account phonon mediated coupling between the
exciton fine structure states as well as the dielectric enhancement effect
resulting from the anisotropic shell of DiR NCs. This theoretical approach is
used to model the experimental results and allows us to explain most of the
measured features. The spin dynamics of the dark excitons is investigated in
magnetic fields by time-resolved photoluminescence. The results highlight the
importance of confined acoustic phonons in the spin relaxation of dark
excitons. The bare core surface as well as the core/shell interface give rise
to an efficient spin relaxation channel, while the surface of core/shell NCs
seems to play only a minor role.Comment: 18 pages, 15 figure
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Discovery of a flux-related change of the cyclotron line energy in Her X-1
We present the results of ten years of repeated measurements of the Cyclotron
Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar
Her X-1 and report the discovery of a positive correlation of the centroid
energy of this absorption feature in pulse phase averaged spectra with source
luminosity.Our results are based on a uniform analysis of observations bythe
RXTE satellite from 1996 to 2005, using sufficiently long observations of 12
individual 35-day Main-On states of the source. The mean centroid energy E_c of
the CRSF in pulse phase averaged spectra of Her X-1 during this time is around
40 keV, with significant variations from one Main-On state to the next. We find
that the centroid energy of the CRSF in Her X-1 changes by ~5% in energy for a
factor of 2 in luminosity. The correlation is positive, contrary to what is
observed in some high luminosity transient pulsars. Our finding is the first
significant measurement of a positive correlation between E_c and luminosity in
any X-ray pulsar. We suggest that this behaviour is expected in the case of
sub-Eddington accretion and present a calculation of a quantitative estimate,
which is very consistent with the effect observed in Her X-1.We urge that Her
X-1 is regularly monitored further and that other X-ray pulsars are
investigated for a similar behaviour.Comment: 4 pages, 2 figures, accepted by A&A Letter
Tight-binding g-Factor Calculations of CdSe Nanostructures
The Lande g-factors for CdSe quantum dots and rods are investigated within
the framework of the semiempirical tight-binding method. We describe methods
for treating both the n-doped and neutral nanostructures, and then apply these
to a selection of nanocrystals of variable size and shape, focusing on
approximately spherical dots and rods of differing aspect ratio. For the
negatively charged n-doped systems, we observe that the g-factors for
near-spherical CdSe dots are approximately independent of size, but show strong
shape dependence as one axis of the quantum dot is extended to form rod-like
structures. In particular, there is a discontinuity in the magnitude of
g-factor and a transition from anisotropic to isotropic g-factor tensor at
aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of
both the conduction and valence band electrons. We find that the behavior of
the electron g-factor in the neutral nanocrystals is generally similar to that
in the n-doped case, showing the same strong shape dependence and discontinuity
in magnitude and anisotropy. In smaller systems the g-factor value is dependent
on the details of the surface model. Comparison with recent measurements of
g-factors for CdSe nanocrystals suggests that the shape dependent transition
may be responsible for the observations of anomalous numbers of g-factors at
certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio
Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum
Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. © 2009 Elsevier Ltd. All rights reserved
Least action principle for envelope functions in abrupt heterostructures
We apply the envelope function approach to abrupt heterostructures starting
with the least action principle for the microscopic wave function. The
interface is treated nonperturbatively, and our approach is applicable to
mismatched heterostructure. We obtain the interface connection rules for the
multiband envelope function and the short-range interface terms which consist
of two physically distinct contributions. The first one depends only on the
structure of the interface, and the second one is completely determined by the
bulk parameters. We discover new structure inversion asymmetry terms and new
magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
- …
