1,216 research outputs found

    On increasing of the competitiveness of the garment industry in Siberian Federal District on the basis of the industrial cluster establishment

    Full text link
    The issue of the development prospects of the Russian economy and the economy of its individual branches in the regions is highly relevant in terms of the increasing crises and economic development challenges. The scope of the study is a garment industry of the Siberian Federal District, which includes 12 subjects, and only six of them develop the garment industry actively. There are the regions of Kemerovo, Novosibirsk, Omsk, Tomsk, Krasnoyarsk Krai and the Republic of Khakassia. The subject matter of the research is the state and prospects of the garment industry of the Siberian Federal District. It also includes the assessment of the garment industry as one of the sub-sectors of the light industry in terms of its competitiveness in the domestic market. The purpose of the comprehensive study is to determine the conditions and factors affecting the development of the industry, as well as to identify its development reserves and competitiveness on the basis of industrial cluster’s generation. The hypothesis of this study is that in the Siberian Federal District, there are a need and reserves to create a cluster of the garment industry. The main methods of the study are the comparative analysis, the expert assessment of the sector in certain regions of the Siberian Federal District, as well as the assessment of possible formation of the industrial cluster in the region. The results of the study are the evaluation of the competitiveness and prospects of the garment industry in Russia and the Siberian Federal District (a low level of development and competitiveness); the evaluation of the development level of the garment industry in the Federal District, which have showed the demand for apparel products from the population and enterprises, as well as the conditions for the provision of clothing manufacture with natural fabrics and synthetic materials, labor resources and research and development achievements; also the justification of the existing potential for development of a sectoral cluster by means of pooling together the productions and economic communications of the Novosibirsk and Omsk regions at the initial stage. The obtained results should be used to strengthen works for the development of regional industrial cluster (with a creation of a working group at the regional governments, the garment industry development programs, and practical measures for its realization), as well as a creation of conditions for stimulation of investment activity of entrepreneurs. The research has confirmed the hypothesis, that in the Siberian Federal District, there are a need and reserves to create a cluster of the garment industry

    Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields

    Full text link
    The exciton spin dynamics and polarization properties of the related emission are investigated in colloidal CdSe/CdS dot-in-rod (DiR) and spherical core/shell nanocrystal (NC) ensembles by magneto-optical photoluminescence (PL) spectroscopy in magnetic fields up to 15 T. It is shown that the degree of circular polarization (DCP) of the exciton emission induced by the magnetic field is affected by the NC geometry as well as the exciton fine structure and can provide information on nanorod orientation. A theory to describe the circular and linear polarization properties of the NC emission in magnetic field is developed. It takes into account phonon mediated coupling between the exciton fine structure states as well as the dielectric enhancement effect resulting from the anisotropic shell of DiR NCs. This theoretical approach is used to model the experimental results and allows us to explain most of the measured features. The spin dynamics of the dark excitons is investigated in magnetic fields by time-resolved photoluminescence. The results highlight the importance of confined acoustic phonons in the spin relaxation of dark excitons. The bare core surface as well as the core/shell interface give rise to an efficient spin relaxation channel, while the surface of core/shell NCs seems to play only a minor role.Comment: 18 pages, 15 figure

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Discovery of a flux-related change of the cyclotron line energy in Her X-1

    Get PDF
    We present the results of ten years of repeated measurements of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1 and report the discovery of a positive correlation of the centroid energy of this absorption feature in pulse phase averaged spectra with source luminosity.Our results are based on a uniform analysis of observations bythe RXTE satellite from 1996 to 2005, using sufficiently long observations of 12 individual 35-day Main-On states of the source. The mean centroid energy E_c of the CRSF in pulse phase averaged spectra of Her X-1 during this time is around 40 keV, with significant variations from one Main-On state to the next. We find that the centroid energy of the CRSF in Her X-1 changes by ~5% in energy for a factor of 2 in luminosity. The correlation is positive, contrary to what is observed in some high luminosity transient pulsars. Our finding is the first significant measurement of a positive correlation between E_c and luminosity in any X-ray pulsar. We suggest that this behaviour is expected in the case of sub-Eddington accretion and present a calculation of a quantitative estimate, which is very consistent with the effect observed in Her X-1.We urge that Her X-1 is regularly monitored further and that other X-ray pulsars are investigated for a similar behaviour.Comment: 4 pages, 2 figures, accepted by A&A Letter

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum

    Get PDF
    Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. © 2009 Elsevier Ltd. All rights reserved

    Least action principle for envelope functions in abrupt heterostructures

    Full text link
    We apply the envelope function approach to abrupt heterostructures starting with the least action principle for the microscopic wave function. The interface is treated nonperturbatively, and our approach is applicable to mismatched heterostructure. We obtain the interface connection rules for the multiband envelope function and the short-range interface terms which consist of two physically distinct contributions. The first one depends only on the structure of the interface, and the second one is completely determined by the bulk parameters. We discover new structure inversion asymmetry terms and new magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur

    General boundary conditions for the envelope function in multiband k.p model

    Full text link
    We have derived general boundary conditions (BC) for the multiband envelope functions (which do not contain spurious solutions) in semiconductor heterostructures with abrupt heterointerfaces. These BC require the conservation of the probability flux density normal to the interface and guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy independent and are characteristic properties of the interface. Calculations have been performed of the effect of the general BC on the electron energy levels in a potential well with infinite potential barriers using a coupled two band model. The connection with other approaches to determining BC for the envelope function and to the spurious solution problem in the multiband k.p model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15 issue 200
    corecore