5,453 research outputs found
Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields
How and where are coronal loops rooted in the solar lower atmosphere? The
details of the magnetic environment and its evolution at the footpoints of
coronal loops are crucial to understanding the processes of mass and energy
supply to the solar corona. To address the above question, we use
high-resolution line-of-sight magnetic field data from the Imaging Magnetograph
eXperiment instrument on the SUNRISE balloon-borne observatory and coronal
observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics
Observatory of an emerging active region. We find that the coronal loops are
often rooted at the locations with minor small-scale but persistent
opposite-polarity magnetic elements very close to the larger dominant polarity.
These opposite-polarity small-scale elements continually interact with the
dominant polarity underlying the coronal loop through flux cancellation. At
these locations we detect small inverse Y-shaped jets in chromospheric Ca II H
images obtained from the SUNRISE Filter Imager during the flux cancellation.
Our results indicate that magnetic flux cancellation and reconnection at the
base of coronal loops due to mixed polarity fields might be a crucial feature
for the supply of mass and energy into the corona.Comment: Published in the Astrophysical Journal Supplement Serie
Dynamical Processing of Geophysical Signatures based on SPOT-5 Remote Sensing Imagery
An intelligent post-processing computational paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of geophysical signatures based on Spot-5 imagery is proposed. As a matter of particular study, a robust algorithm is reported for the analysis of the dynamic behavior of geophysical indexes extracted from the real-world remotely sensed scenes. The simulation results verify the efficiency of the approach as required for decision support in resources management
Kinematics of Magnetic Bright Features in the Solar Photosphere
Convective flows are known as the prime means of transporting magnetic fields
on the solar surface. Thus, small magnetic structures are good tracers of the
turbulent flows. We study the migration and dispersal of magnetic bright
features (MBFs) in intergranular areas observed at high spatial resolution with
Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion
process whose parameters are computed for various areas in the quiet Sun and
the vicinity of active regions from seeing-free data. We find that magnetic
concentrations are best described as random walkers close to network areas
(diffusion index, gamma=1.0), travelers with constant speeds over a
supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux
emergence and/or within active regions (gamma=1.4-1.5). The three types of
regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s,
and 25-70 km^2/s, respectively. The MBFs in these three types of regions are
found to display a distinct kinematic behavior at a confidence level in excess
of 95%.Comment: 8 pages, 4 figure
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
Energy Physics (July, 18-24, 2013) at Stockholm, Swede
Recommended from our members
Biomineralisation by earthworms: an investigation into the stability and distribution of amorphous calcium carbonate
Background
Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis.
Results
The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg−1 (n = 3; ± std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22–35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν2: ν4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA.
Conclusions
ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components
Study protocol of cost-effectiveness and cost-utility of a biopsychosocial multidisciplinary intervention in the evolution of non-specific sub-acute low back pain in the working population: cluster randomised trial.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain (LBP), with high incidence and prevalence rate, is one of the most common reasons to consult the health system and is responsible for a significant amount of sick leave, leading to high health and social costs. The objective of the study is to assess the cost-effectiveness and cost-utility analysis of a multidisciplinary biopsychosocial educational group intervention (MBEGI) of non-specific sub-acute LBP in comparison with the usual care in the working population recruited in primary healthcare centres. Methods/design:
The study design is a cost-effectiveness and cost-utility analysis of a MBEGI in comparison with the usual care of non-specific sub-acute LBP.Measures on effectiveness and costs of both interventions will be obtained from a cluster randomised controlled clinical trial carried out in 38 Catalan primary health care centres, enrolling 932 patients between 18 and 65 years old with a diagnosis of non-specific sub-acute LBP. Effectiveness measures are: pharmaceutical treatments, work sick leave (% and duration in days), Roland Morris disability, McGill pain intensity, Fear Avoidance Beliefs (FAB) and Golberg Questionnaires. Utility measures will be calculated from the SF-12. The analysis will be performed from a social perspective. The temporal horizon is at 3 months (change to chronic LBP) and 12 months (evaluate the outcomes at long term. Assessment of outcomes will be blinded and will follow the intention-to-treat principle. Discussion: We hope to demonstrate the cost-effectiveness and cost-utility of MBEGI, see an improvement in the patients' quality of life, achieve a reduction in the duration of episodes and the chronicity of non-specific low back pain, and be able to report a decrease in the social costs. If the intervention is cost-effectiveness and cost-utility, it could be applied to Primary Health Care Centres. Trial registration:
ISRCTN: ISRCTN5871969
Language and cultural capital in school experience of Polish children in Scotland
This article addresses the complex relationship between migration and education in the context of recent intra-European labour mobility. It considers how this mobility impacts the education and life chances of migrant students attending schools in Scotland, UK. By examining the experiences of Polish migrant children and youth at schools in Scotland, the article engages with the issues of language, cultural capital transferability and social positioning. Drawing on qualitative data from 65 in-depth interviews with school children aged 5–17 years, their parents and teachers, as well as observations in the contexts of school and home, the article points to a range of factors affecting the transition of migrant pupils to new schools and social environments
Clostridium difficile PCR Ribotypes from Different Animal Hosts and Different Geographic Regions
- …
