1,235 research outputs found
Non-invasive detection of molecular bonds in quantum dots
We performed charge detection on a lateral triple quantum dot with star-like
geometry. The setup allows us to interpret the results in terms of two double
dots with one common dot. One double dot features weak tunnel coupling and can
be understood with atom-like electronic states, the other one is strongly
coupled forming molecule-like states. In nonlinear measurements we identified
patterns that can be analyzed in terms of the symmetry of tunneling rates.
Those patterns strongly depend on the strength of interdot tunnel coupling and
are completely different for atomic- or molecule-like coupled quantum dots
allowing the non-invasive detection of molecular bonds.Comment: 4 pages, 4 figure
Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon
Atomic-scale understanding of phosphorous donor wave functions underpins the
design and optimisation of silicon based quantum devices. The accuracy of
large-scale theoretical methods to compute donor wave functions is dependent on
descriptions of central-cell-corrections, which are empirically fitted to match
experimental binding energies, or other quantities associated with the global
properties of the wave function. Direct approaches to understanding such
effects in donor wave functions are of great interest. Here, we apply a
comprehensive atomistic theoretical framework to compute scanning tunnelling
microscopy (STM) images of subsurface donor wave functions with two
central-cell-correction formalisms previously employed in the literature. The
comparison between central-cell models based on real-space image features and
the Fourier transform profiles indicate that the central-cell effects are
visible in the simulated STM images up to ten monolayers below the silicon
surface. Our study motivates a future experimental investigation of the
central-cell effects via STM imaging technique with potential of fine tuning
theoretical models, which could play a vital role in the design of donor-based
quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201
Dopant metrology in advanced FinFETs
Ultra-scaled FinFET transistors bear unique fingerprint-like device-to-device
differences attributed to random single impurities. This paper describes how,
through correlation of experimental data with multimillion atom tight-binding
simulations using the NEMO 3-D code, it is possible to identify the impurity's
chemical species and determine their concentration, local electric field and
depth below the Si/SiO interface. The ability to model the
excited states rather than just the ground state is the critical component of
the analysis and allows the demonstration of a new approach to atomistic
impurity metrology.Comment: 6 pages, 3 figure
Engineered valley-orbit splittings in quantum confined nanostructures in silicon
An important challenge in silicon quantum electronics in the few electron
regime is the potentially small energy gap between the ground and excited
orbital states in 3D quantum confined nanostructures due to the multiple valley
degeneracies of the conduction band present in silicon. Understanding the
"valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap
prevents leakage of the qubit states into a higher dimensional Hilbert space.
The VO gap varies considerably depending on quantum confinement, and can be
engineered by external electric fields. In this work we investigate VO
splitting experimentally and theoretically in a range of confinement regimes.
We report measurements of the VO splitting in silicon quantum dot and donor
devices through excited state transport spectroscopy. These results are
underpinned by large-scale atomistic tight-binding calculations involving over
1 million atoms to compute VO splittings as functions of electric fields, donor
depths, and surface disorder. The results provide a comprehensive picture of
the range of VO splittings that can be achieved through quantum engineering.Comment: 4 pages, 4 figure
Valley filtering and spatial maps of coupling between silicon donors and quantum dots
Exchange coupling is a key ingredient for spin-based quantum technologies
since it can be used to entangle spin qubits and create logical spin qubits.
However, the influence of the electronic valley degree of freedom in silicon on
exchange interactions is presently the subject of important open questions.
Here we investigate the influence of valleys on exchange in a coupled
donor/quantum dot system, a basic building block of recently proposed schemes
for robust quantum information processing. Using a scanning tunneling
microscope tip to position the quantum dot with sub-nm precision, we find a
near monotonic exchange characteristic where lattice-aperiodic modulations
associated with valley degrees of freedom comprise less than 2~\% of exchange.
From this we conclude that intravalley tunneling processes that preserve the
donor's and valley index are filtered out of the interaction
with the valley quantum dot, and that the and
intervalley processes where the electron valley index changes are weak.
Complemented by tight-binding calculations of exchange versus donor depth, the
demonstrated electrostatic tunability of donor/QD exchange can be used to
compensate the remaining intravalley oscillations to realise uniform
interactions in an array of highly coherent donor spins.Comment: 6 pages, 4 figures, 6 pages Supplemental Materia
Negative differential conductance in quantum dots in theory and experiment
Experimental results for sequential transport through a lateral quantum dot
in the regime of spin blockade induced by spin dependent tunneling are compared
with theoretical results obtained by solving a master equation for independent
electrons. Orbital and spin effects in electron tunneling in the presence of a
perpendicular magnetic field are identified and discussed in terms of the
Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of
negative differential conductances is observed. Electrical asymmetries in
tunnel rates and capacitances must be introduced in order to account for the
experimental findings. Fast relaxation of the excited states in the quantum dot
have to be assumed, in order to explain the absence of certain structures in
the transport spectra.Comment: 4 pages, 4 figure
Non-invasive detection of charge-rearrangement in a quantum dot in high magnetic fields
We demonstrate electron redistribution caused by magnetic field on a single
quantum dot measured by means of a quantum point contact as non-invasive
detector. Our device which is fabricated by local anodic oxidation allows to
control independently the quantum point contact and all tunnelling barriers of
the quantum dot. Thus we are able to measure both the change of the quantum dot
charge and also changes of the electron configuration at constant number of
electrons on the quantum dot. We use these features to exploit the quantum dot
in a high magnetic field where transport through the quantum dot displays the
effects of Landau shells and spin blockade. We confirm the internal
rearrangement of electrons as function of the magnetic field for a fixed number
of electrons on the quantum dot.Comment: 4 pages, 5 figure
- …
