5,859 research outputs found
Effects of burying and removing dead leaves from the ground on the development of scab epidemics in an apple organic orchard.
Ascospores produced on scabbed leaves in the leaf litter constitute the primary
inoculum causing scab infections in apple orchards during the year. The trial, carried
out in a commercial organic orchard, permitted to evaluate the effects of the
removal of dead leaves located on the inter-row supplemented by the ploughing in of
the leaves left on the row, on the development of scab epidemics. From the first
recorded contamination to harvest time, lesions on leaves and fruits were counted to
determine reduction in disease incidence and severity, compared with the untreated
plots. Disease severity as a function of the distance from the untreated plot was also
observed, to evaluate the spore dispersal gradient within the orchard. The results
show that the ploughing in and the removal of the litter reduced disease incidence by
62% on leaves, and by almost 82% on fruits to harvest. Moreover, measurements of
the dispersal gradient show that the spores do not disperse, or little, beyond 20m of
the untreated zone
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties
NiTi porous materials with unprecedented superelasticity and shape memory
were manufactured by self-entangling, compacting and heat treating NiTi wires.
The versatile processing route used here allows to produce entanglements of
either superelastic or ferroelastic wires with tunable mesostructures. Three
dimensional (3D) X-ray microtomography shows that the entanglement
mesostructure is homogeneous and isotropic. The thermomechanical compressive
behavior of the entanglements was studied using optical measurements of the
local strain field. At all relative densities investigated here ( 25 -
40), entanglements with superelastic wires exhibit remarkable macroscale
superelasticity, even after compressions up to 25, large damping capacity,
discrete memory effect and weak strain-rate and temperature dependencies.
Entanglements with ferroelastic wires resemble standard elastoplastic fibrous
systems with pronounced residual strain after unloading. However, a full
recovery is obtained by heating the samples, demonstrating a large shape memory
effect at least up to 16% strain.Comment: 31 pages, 10 figures, submitted to Acta Materiali
Potential of the small-granule starch mutation for the Bioethanol Industry.
The industrial starch market is undergoing major expansion, but certain specific industrial uses cannot be satisfied by native starches and, therefore, chemical or physical modification is necessary. Mutations in the cassava starch biosynthesis pathways were discovered at CIAT (Cali, Colombia) few years ago. A starch mutation induced by gamma rays radiation resulted in a deeply modified branching pattern of amylopectin as well as other starch characteristics and properties. These modifications include changes in starch granule ultrastructure (e.g. decreased starch crystallinity), a weak organized structure, and increased susceptibility to mild acid and enzymatic raw starch hydrolysis (fastest and most efficient hydrolysis of all studied native starches). This mutation could offer interesting advantages for the production of bioethanol. Surprisingly this mutation also results in increased proportion of amylopectin. Hydrolysis was more dependent on granule morphology than on starch chemical composition. Recent crosses produced segregating progenies whose starch had the small-granule characteristics, but amylopectin content ranged from 19 to 42%. Rapid viscoamylograms of the latter starch showed very distinctive patterns. (Résumé d'auteur
Bidirectional transport on a dynamic lattice
Bidirectional variants of stochastic many particle models for transport by
molecular motors show a strong tendency to form macroscopic clusters on static
lattices. Inspired by the fact that the microscopic tracks for molecular motors
are dynamical, we study the influence of different types of lattice dynamics on
stochastic bidirectional transport. We observe a transition toward efficient
transport (corresponding to the dissolution of large clusters) controlled by
the lattice dynamics.Comment: 5 pages, 5 figure
The experiences of women with polycystic ovary syndrome on a very low-calorie diet
The research was funded by an educational grant from LighterLife. Broom was the Medical Director for LighterLife at the time of the research. Johnson is the Head of Nutrition and Research at LighterLife. The authors report no other conflicts of interest in this work.Peer reviewedPublisher PD
Hardy varieties in competition with weeds for sustainable agriculture and especially organic farming
A three-year programme was begun in 2007 to develop a method for assessing the competitive potential of wheat varieties with respect to weeds and to encourage the adoption of this criterion in selection programmes. The first year of experiments made it possible to identify the most explanatory characteristics of the competitive potential of wheat (using Italian ryegrass to simulate weeds): height first, followed by ground cover and leaf habit. These factors are nevertheless not adequate for totally predicting the competitive potential of wheat varieties and, in particular, intermediate varieties for which wide variations were observed from one situation to another in our experiments. We are now waiting for the results of two additional years of experiments
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
- …
