2,443 research outputs found

    Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Get PDF
    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to ~ 75 milliradians, with an estimated axial brightness of 3.6x10[superscript]14 atoms s[superscript]-1 sr[superscript]-1 for Li and 7.4x10[superscript]15 atoms s[superscript]-1 sr[superscript]-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution

    Cold atoms in micromachined waveguides: A new platform for atom-photon interactions

    Get PDF
    Hybrid quantum devices, incorporating both atoms and photons, can exploit the benefits of both to enable scalable architectures for quantum computing and quantum communication, as well as chip-scale sensors and single-photon sources. Production of such devices depends on the development of an interface between their atomic and photonic components. This should be compact, robust, and compatible with existing technologies from both fields. Here we demonstrate such an interface. Cold cesium atoms are trapped inside a transverse, 30μm-diameter through hole in an optical fiber, created via laser micromachining. When the guided light is on resonance with the cesium D2 line, up to 87% of it is absorbed by the atoms. The corresponding optical depth per unit length is ∼700 cm−1, higher than any reported for a comparable system. This is important for miniaturization and scalability. The technique can be equally effective in optical waveguide chips and other existing photonic systems, providing a promising platform for fundamental research

    Methodologies for determining staffing needs in healthcare: systematic literature review

    Get PDF
    The determination of staffing needs in healthcare is not just calculating the optimal number of professionals but is defining how the professional contingent accompanies the development of the healthcare organisation and of the population’s care needs. This research investigates the existence of a gold standard for determining health personnel requirements. We perform a systematic literature review to explore several approaches worldwide, examining a wide range of contextual variables, useful for the definition of an omni-comprehensive approach. A total of 557 articles was initially detected, then reduced to 57 after excluding everything not related to healthcare context and staff planning models. Results do not reveal a recognized standard for determining staffing needs. Approaches to the definition of staffing standards are mainly ex-ante (31%), based on the characteristics of specific models and organisational needs, or ex-post (62%), based on production analysis and historical trends. Most of these refer to the medical and nursing category (68.4%), while the minority proposes a multi-professional approach (17.5%). This review highlights innovative approaches based on algorithms which, starting from historical data, are adjusted by moderating key variables such as contextual factors, healthcare organisation models and professional attributes. The review suggests: 1. Develop and share a unique tool for defining standards based on several variables that identify the characteristics of the context 2. Use up-to-date information flows and quality data 3. Consider a multi-professional approach 4. Adopt a long-term vision and continuous dialogue with the training process It is clear the need to develop a tool for the definition of personnel requirements in line with internal and external changes in the health system. Therefore, such models need to account for an adequate number of variables, useful to identify the characteristics of the overall context. Key messages: The development of staffing needs estimates must necessarily rely on a certain level of standardisation, but at the same time must take into account the variability characterising different contexts. In order to respond to recent demographic and epidemiological trends, it is crucial to include in the model skill mix and task shifting strategies involving health professionals as a whole

    Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    Get PDF
    We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year time scales, which can bring additional insight on the processes responsible for its broadband emission. We observed Mrk 421 in the very high energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 hours of effective time after quality cuts. The VHE flux variability is quantified with several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes for the first time. The 2.3 year long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year time scales. Mrk 421 was found in different gamma-ray emission states during the 2.3 year long observation period. Flares and different levels of variability in the gamma-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Mets\"ahovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. The fractional variability is overall increasing with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and gamma-ray photons are either the same, as expected in the Synchrotron-Self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping ([email protected]), Marina Manganaro ([email protected]), Diego Tescaro ([email protected]), To be published in Astronomy&Astrophysics (A&A), 12 pages, 9 figure

    Multifrequency monitoring of the blazar 0716+714 during the GASP-WEBT-AGILE campaign of 2007

    Full text link
    Since the CGRO operation in 1991-2000, one of the primary unresolved questions about the blazar gamma-ray emission has been its possible correlation with the low-energy (in particular optical) emission. To help answer this problem, the Whole Earth Blazar Telescope (WEBT) consortium has organized the GLAST-AGILE Support Program (GASP) to provide the optical-to-radio monitoring data to be compared with the gamma-ray detections by the AGILE and GLAST satellites. This new WEBT project started in early September 2007, just before a strong gamma-ray detection of 0716+714 by AGILE. We present the GASP-WEBT optical and radio light curves of this blazar obtained in July-November 2007, about various AGILE pointings at the source. We construct NIR-to-UV spectral energy distributions (SEDs), by assembling GASP-WEBT data together with UV data from the Swift ToO observations of late October. We observe a contemporaneous optical-radio outburst, which is a rare and interesting phenomenon in blazars. The shape of the SEDs during the outburst appears peculiarly wavy because of an optical excess and a UV drop-and-rise. The optical light curve is well sampled during the AGILE pointings, showing prominent and sharp flares. A future cross-correlation analysis of the optical and AGILE data will shed light on the expected relationship between these flares and the gamma-ray events.Comment: 5 pages, 5 figures, to be published in A&A (Letters); revised to match the final version (changes in Fig. 5 and related text

    The breadth of primary care: a systematic literature review of its core dimensions

    Get PDF
    Background: Even though there is general agreement that primary care is the linchpin of effective health care delivery, to date no efforts have been made to systematically review the scientific evidence supporting this supposition. The aim of this study was to examine the breadth of primary care by identifying its core dimensions and to assess the evidence for their interrelations and their relevance to outcomes at (primary) health system level. Methods: A systematic review of the primary care literature was carried out, restricted to English language journals reporting original research or systematic reviews. Studies published between 2003 and July 2008 were searched in MEDLINE, Embase, Cochrane Library, CINAHL, King's Fund Database, IDEAS Database, and EconLit. Results: Eighty-five studies were identified. This review was able to provide insight in the complexity of primary care as a multidimensional system, by identifying ten core dimensions that constitute a primary care system. The structure of a primary care system consists of three dimensions: 1. governance; 2. economic conditions; and 3. workforce development. The primary care process is determined by four dimensions: 4. access; 5. continuity of care; 6. coordination of care; and 7. comprehensiveness of care. The outcome of a primary care system includes three dimensions: 8. quality of care; 9. efficiency care; and 10. equity in health. There is a considerable evidence base showing that primary care contributes through its dimensions to overall health system performance and health. Conclusions: A primary care system can be defined and approached as a multidimensional system contributing to overall health system performance and health

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore