805 research outputs found
Network Inference via the Time-Varying Graphical Lasso
Many important problems can be modeled as a system of interconnected
entities, where each entity is recording time-dependent observations or
measurements. In order to spot trends, detect anomalies, and interpret the
temporal dynamics of such data, it is essential to understand the relationships
between the different entities and how these relationships evolve over time. In
this paper, we introduce the time-varying graphical lasso (TVGL), a method of
inferring time-varying networks from raw time series data. We cast the problem
in terms of estimating a sparse time-varying inverse covariance matrix, which
reveals a dynamic network of interdependencies between the entities. Since
dynamic network inference is a computationally expensive task, we derive a
scalable message-passing algorithm based on the Alternating Direction Method of
Multipliers (ADMM) to solve this problem in an efficient way. We also discuss
several extensions, including a streaming algorithm to update the model and
incorporate new observations in real time. Finally, we evaluate our TVGL
algorithm on both real and synthetic datasets, obtaining interpretable results
and outperforming state-of-the-art baselines in terms of both accuracy and
scalability
ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry
This paper presents the current state of the global gyrokinetic code ORB5 as
an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177
409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of
equations using a PIC scheme and also includes collisions and strong flows. The
code assumes multiple gyrokinetic ion species at all wavelengths for the
polarization density and drift-kinetic electrons. Variants of the physical
model can be selected for electrons such as assuming an adiabatic response or a
``hybrid'' model in which passing electrons are assumed adiabatic and trapped
electrons are drift-kinetic. A Fourier filter as well as various control
variates and noise reduction techniques enable simulations with good
signal-to-noise ratios at a limited numerical cost. They are completed with
different momentum and zonal flow-conserving heat sources allowing for
temperature-gradient and flux-driven simulations. The code, which runs on both
CPUs and GPUs, is well benchmarked against other similar codes and analytical
predictions, and shows good scalability up to thousands of nodes
The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors
International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps
How university’s activities support the development of students’ entrepreneurial abilities: case of Slovenia and Croatia
The paper reports how the offered university activities support the development of students’ entrepreneurship abilities. Data were collected from 306 students from Slovenian and 609 students from Croatian universities. The study reduces the gap between theoretical researches about the academic entrepreneurship education and individual empirical studies about the student’s estimation of the offered academic activities for development of their entrepreneurial abilities. The empirical research revealed differences in Slovenian and Croatian students’ perception about (a) needed academic activities and (b) significance of the offered university activities, for the development of their entrepreneurial abilities. Additionally, the results reveal that the impact of students’ gender and study level on their perception about the importance of the offered academic activities is not significant for most of the considered activities. The main practical implication is focused on further improvement of universities’ entrepreneurship education programs through selection and utilization of activities which can fill in the recognized gaps between the students’ needed and the offered academic activities for the development of students’ entrepreneurial abilities
Targeting lipid metabolism in metastatic prostate cancer
Despite key advances in the treatment of prostate cancer (PCa), a proportion of men have de novo resistance, and all will develop resistance to current therapeutics over time. Aberrant lipid metabolism has long been associated with prostate carcinogenesis and progression, but more recently there has been an explosion of preclinical and clinical data which is informing new clinical trials. This review explores the epidemiological links between obesity and metabolic syndrome and PCa, the evidence for altered circulating lipids in PCa and their potential role as biomarkers, as well as novel therapeutic strategies for targeting lipids in men with PCa, including therapies widely used in cardiovascular disease such as statins, metformin and lifestyle modification, as well as novel targeted agents such as sphingosine kinase inhibitors, DES1 inhibitors and agents targeting FASN and beta oxidation.Tahlia Scheinberg, Blossom Mak, Lisa Butler, Luke Selth and Lisa G. Horvat
Telomerase promoter mutations in cancer: an emerging molecular biomarker?
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to
the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia
Long-term survival still eludes most patients with leukemia and non-Hodgkin’s lymphoma. No approved therapies target the hallmark of the B cell, its mIgM, also known as the B-cell receptor (BCR). Aptamers are small oligonucleotides that can specifically bind to a wide range of target molecules and offer some advantages over antibodies as therapeutic agents. Here, we report the rational engineering of aptamer TD05 into multimeric forms reactive with the BCR that may be useful in biomedical applications. Systematic truncation of TD05 coupled with modification with locked nucleic acids (LNA) increased conformational stability and nuclease resistance. Trimeric and tetrameric versions with optimized polyethyleneglycol (PEG) linker lengths exhibited high avidity at physiological temperatures both in vitro and in vivo. Competition and protease studies showed that the multimeric, optimized aptamer bound to membrane-associated human mIgM, but not with soluble IgM in plasma, allowing the possibility of targeting leukemias and lymphomas in vivo. The B-cell specificity of the multivalent aptamer was confirmed on lymphoma cell lines and fresh clinical leukemia samples. The chemically engineered aptamers, with significantly improved kinetic and biochemical features, unique specificity and desirable pharmacological properties, may be useful in biomedical applications
Deconvoluting hepatic processing of carbon nanotubes
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans
- …
