58 research outputs found

    Univocal Discrimination of α Particles Produced by 11B(p, α)2 α Fusions in Laser-Matter Experiments by Advanced Thomson Spectrometry

    Get PDF
    The energy problem is an open issue becoming increasingly pressing. The possibility to use nuclear fusion as an alternative energy source is thus acquiring progressively more importance and many investors are pushing to achieve the goal of an electric plant based on fusion. The most studied reaction is the deuterium-tritium one, but this poses several technical issues related to the handling of the radioactive fuel and neutron generation. In this frame, the aneutronic 11B(p, α)2α fusion reaction has attracted the interest of many researchers. Despite a fusion reactor based on pB is still a long-term goal, the study of this reaction is important both for astrophysics research and for its possible employment in schemes of high brightness source of α particles for applications, as for instance in medicine. Nevertheless, the univocal identification of the produced alphas is a well-known challenging task when the reaction is triggered by high-intensity lasers. Indeed, due to the multifaceted emission typical of laser-matter interactions, the signal coming from alphas is often superimposed to that generated by protons and by other ions, and in many cases, it is therefore hardly recognizable. In this work, we analysed the possibility of employing a Thomson spectrometer (TS) with an adequate differential filtering system for the exclusion from the α-particle trace, the contribution of all other ionic species. Moreover, for the energy ranges where the filtering method cannot be successfully applied, we investigated the feasibility of integrating in the TS assembly a particle detector for time-of-flight (TOF) measurements

    High-Sensitivity Thomson Spectrometry in Experiments of Laser-Driven Low-Rate NeutronLess Fusion Reactions

    Get PDF
    The aneutronic 11B(p, α)2α fusion reaction driven by the interaction of high-energy lasers with matter has become a popular topic of research, since it represents a potential long-term goal alternative to the most studied deuterium-tritium reaction. However, the detection of the typical ionic products, especially alpha particles, of this low-rate fusion reaction is a challenging issue, due to their low flux. One of the diagnostic devices that can be implemented in laser-driven proton-boron fusion experiments is a Thomson spectrometer (TS), which is capable of detecting and discriminating ions according to their mass-to-charge ratio (A/Z, where A is the mass number and Z is the atomic number of the ions). In this work, we report on the ultimate test of a TS, which was designed and developed at the ENEA Research Centre in Frascati, Italy, in the context of a p + 11B fusion experiment. Our device - designed to have high sensitivity and a robust shielding against electromagnetic pulses (EMPs) - was implemented at the PALS laser facility (∼700 J in ∼350 ps pulses) at a distance of 367 mm from the laser-plasma interaction point. We analyse here the measured signals obtained with our device, focusing on the assessment of their signal-to-background ratio. Despite the presence of strong EMPs and background radiation at such a short distance from the laser-irradiated target, the TS proved to be suitable for effectively detecting protons and heavier ions stemming from the plasma source

    Time-of-flight methodologies with large-area diamond detectors for ion characterization in laser-driven experiments

    Get PDF
    The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions. Nevertheless, the presence of strong electromagnetic pulses (EMPs) generated during the interactions can severely hinder its employment. For this reason, the diagnostic system must be designed to have high EMP shielding. Here we present a new advanced prototype of detector, developed at ENEA-Centro Ricerche Frascati (Italy), with a large-area (15 mm × 15 mm) polycrystalline diamond sensor having 150 μm thickness. The tailored detector design and testing ensure high sensitivity and, thanks to the fast temporal response, high-energy resolution of the reconstructed ion spectrum. The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility (100 J, fs, W/cm2) at GSI (Germany). The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained

    Measurement of ion stopping power in the framework of nuclear reactions in plasmas

    Get PDF
    The study of nuclear reactions and interactions in plasmas has recently assumed great importance because of its connection with processes such as laser-driven ion acceleration and nuclear fusion for massive energy production. In fact, the extremely high electron densities established in the plasma bring to different behaviour of charged particles with respect to that observed when a stable beam impinges on a solid target. Ion stopping power in cold matter is relatively well known and has been characterized with the help of a large set of experimental data and theoretical studies; on the contrary a lot of open questions remain when it comes to ions stopping in a plasma, especially in the energy domain where the projectile ion velocity approaches that of free plasma electrons. The main aim of this work is a systematic and careful measurement of stopping power for several ions versus plasma parameters, especially in the region of thermal velocities, where the energy deposition should depend strongly on plasma temperature, density and ionization fraction. The plasma will be generated under vacuum, by interaction of a laser beam with a solid target. Plasma plume will be characterized in temperature and density by optical and X-ray diagnostics; simultaneously the energy loss will be measured for an ion microbeam crossing the plume. This contribution provides an overview of the experimental technique and the results obtained during first tests for the characterization of experimental apparatus

    Radioisotope production using lasers: From basic science to applications

    Get PDF
    The discovery of chirped pulse amplification has led to great improvements in laser technology, enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers. Protons with energies of tens of MeV can be accelerated using, for instance, target normal sheath acceleration and focused on secondary targets. Under such conditions, nuclear reactions can occur, with the production of radioisotopes suitable for medical application. The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators. In this paper, we study the production of 67Cu, 63Zn, 18F, and 11C, which are currently used in positron emission tomography and other applications. At the same time, we study the reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga to put further constraints on the proton distributions at different angles, as well as the reaction 11B(p,α)8Be relevant for energy production. The experiment was performed at the 1 PW laser facility at Vega III in Salamanca, Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a high purity germanium detector. Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera [Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164-170 (2011)]

    A standard protocol for documenting modern and fossil ichnological data

    Get PDF
    The collection and dissemination of vertebrate ichnological data is struggling to keep up with techniques that are becoming common place in the wider palaeontological field. A standard protocol is required in order to ensure that data is recorded, presented, and archived in a manner that will be useful both to contemporary researchers, and to future generations. Primarily, our aim is to make the 3D capture of ichnological data standard practice, and to provide guidance on how such 3D data can be communicated effectively (both via the literature and other means), and archived openly and in perpetuity. We recommend capture of 3D data, and the presentation of said data in the form of photographs, false-colour images, and interpretive drawings. Raw data (3D models of traces) should always be provided in a form usable by other researchers, i.e. in an open format. If adopted by the field as a whole, the result will be a more robust and uniform literature, supplemented by unparalleled availability of datasets for future workers

    Data for: Magnetostratigraphy over the Triassic-Jurassic boundary in the main Karoo Basin

    No full text
    supplementary materials: equal area and orthogonal plots of sample demagnetization behavior from key sites. All samples are shown in in-situ geographic coordinates. Abbreviations for sample number as per text
    corecore