785 research outputs found
Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach
Gravitational wave production from bubble collisions was calculated in the
early nineties using numerical simulations. In this paper, we present an
alternative analytic estimate, relying on a different treatment of
stochasticity. In our approach, we provide a model for the bubble velocity
power spectrum, suitable for both detonations and deflagrations. From this, we
derive the anisotropic stress and analytically solve the gravitational wave
equation. We provide analytical formulae for the peak frequency and the shape
of the spectrum which we compare with numerical estimates. In contrast to the
previous analysis, we do not work in the envelope approximation. This paper
focuses on a particular source of gravitational waves from phase transitions.
In a companion article, we will add together the different sources of
gravitational wave signals from phase transitions: bubble collisions,
turbulence and magnetic fields and discuss the prospects for probing the
electroweak phase transition at LISA.Comment: 48 pages, 14 figures. v2 (PRD version): calculation refined; plots
redone starting from Fig. 4. Factor 2 in GW energy spectrum corrected. Main
conclusions unchanged. v3: Note added at the end of paper to comment on the
new results of 0901.166
Distributional reaction time properties in the Eriksen task: marked differences or hidden similarities with the Simon task?
In conflict tasks, the irrelevant stimulus attribute needs to be suppressed for the correct response to be produced. In the Simon task, earlier researchers have proposed that this suppression is the reason that, after an initial increase, the interference effect decreases for longer RTs, as reflected by late, negative-going delta plots. This view has been challenged by observations of positive-going delta plots, even for long RTs, in other conflict tasks, despite a similar necessity for suppression. For late negative-going delta plots to be interpreted as reflecting suppression, a necessary, although maybe not sufficient, condition is that similar patterns should be observed for other conflict tasks. We reasoned that a similar suppression could be present, but hidden, in the Eriksen flanker task. By recording and analyzing electromyograms of the muscles involved in response execution, we could compute delta plots separately for trials that elicited a subthreshold incorrect response activation (partial error). Late negative-going delta plots were observable on partial-error trials, although they were weaker than for the Simon task, reducing the impact of this inversion on the overall distribution. We further showed that this pattern is modulated by time pressure. Those results indicate that mechanisms leading to negative-going delta plots, similar to those observed in the Simon task, are also at play in the Eriksen task. The link between negative-going delta plots and executive online control is discussed
En 2010, les PME bénéficient de la reprise mais diffèrent leurs investissements.
En 2010, la reprise de l’activité permet aux PME d’améliorer leur rentabilité et de consolider leurs capitaux propres, même si de fortes disparités demeurent. Le renforcement de la trésorerie et la faiblesse de l’investissement demeurent caractéristiques d’un comportement attentiste.PME, activité, rentabilité, endettement, investissement.
Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale
Nearly conformal dynamics at the TeV scale as motivated by the hierarchy
problem can be characterized by a stage of significant supercooling at the
electroweak epoch. This has important cosmological consequences. In particular,
a common assumption about the history of the universe is that the reheating
temperature is high, at least high enough to assume that TeV-mass particles
were once in thermal equilibrium. However, as we discuss in this paper, this
assumption is not well justified in some models of strong dynamics at the TeV
scale. We then need to reexamine how to achieve baryogenesis in these theories
as well as reconsider how the dark matter abundance is inherited. We argue that
baryonic and dark matter abundances can be explained naturally in these setups
where reheating takes place by bubble collisions at the end of the strongly
first-order phase transition characterizing conformal symmetry breaking, even
if the reheating temperature is below the electroweak scale GeV. We
also discuss inflation as well as gravity wave smoking gun signatures of this
class of models.Comment: 22 pages, 7 figure
Development of a monoclonal antibody specific to the endonuclease domain of the human LINE-1 ORF2 protein
BACKGROUND: LINE-1 (L1) retrotransposons are common occupants of mammalian genomes representing about a fifth of the genetic content. Ongoing L1 retrotransposition in the germ line and somatic tissues has contributed to structural genomic variations and disease-causing mutations in the human genome. L1 mobilization relies on the function of two, self-encoded proteins, ORF1 and ORF2. The ORF2 protein contains two characterized domains: endonuclease and reverse transcriptase. RESULTS: Using a bacterially purified endonuclease domain of the human L1 ORF2 protein, we have generated a monoclonal antibody specific to the human ORF2 protein. We determined that the epitope recognized by this monoclonal antibody includes amino acid 205, which is required for the function of the L1 ORF2 protein endonuclease. Using an in vitro L1 cleavage assay, we demonstrate that the monoclonal anti-ORF2 protein antibody partially inhibits L1 endonuclease activity without having any effect on the in vitro activity of the human AP endonuclease. CONCLUSIONS: Overall, our data demonstrate that this anti-ORF2 protein monoclonal antibody is a useful tool for human L1-related studies and that it provides a rationale for the development of antibody-based inhibitors of L1-induced damage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13100-014-0029-x) contains supplementary material, which is available to authorized users
Particle Dark Matter - A Theorist's Perspective
Dark matter is presumably made of some new, exotic particle that appears in
extensions of the Standard Model. After giving a brief overview of some popular
candidates, I discuss in more detail the most appealing case of the
supersymmetric neutralino.Comment: Invited talk at PASCOS--03, Mumbai, Indi
Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions
We consider Kaluza-Klein dark matter from latticized universal dimensions. We
motivate and investigate two different lattice models, where the models differ
in the choice of boundary conditions. The models reproduce relevant features of
the continuum model for Kaluza-Klein dark matter. For the model with simple
boundary conditions, this is the case even for a model with only a few lattice
sites. We study the effects of the latticization on the differential flux of
positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We
find that for different choices of the compactification radius, the
differential positron flux rapidly converges to the continuum model results as
a function of the number of lattice sites. In addition, we consider the
prospects for upcoming space-based experiments such as PAMELA and AMS-02 to
probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA
Baryon Number in Warped GUTs : Model Building and (Dark Matter Related) Phenomenology
In the past year, a new non-supersymmetric framework for electroweak symmetry
breaking (with or without Higgs) involving SU(2)_L * SU(2)_R * U(1)_{B-L} in
higher dimensional warped geometry has been suggested. In this work, we embed
this gauge structure into a GUT such as SO(10) or Pati-Salam. We showed
recently (in hep-ph/0403143) that in a warped GUT, a stable Kaluza-Klein
fermion can arise as a consequence of imposing proton stability. Here, we
specify a complete realistic model where this particle is a weakly interacting
right-handed neutrino, and present a detailed study of this new dark matter
candidate, providing relic density and detection predictions. We discuss
phenomenological aspects associated with the existence of other light (<~ TeV)
KK fermions (related to the neutrino), whose lightness is a direct consequence
of the top quark's heaviness. The AdS/CFT interpretation of this construction
is also presented. Most of our qualitative results do not depend on the nature
of the breaking of the electroweak symmetry provided that it happens near the
TeV brane.Comment: 61 pages, 12 figures; v2: minor changes; v3: Two additional diagrams
in Fig. 10; a numerical factor corrected in section 16.1 (baryogenesis
section), corresponding discussion slightly modified but qualitative results
unchange
Particle Dark Matter Candidates
I give a short overview on some of the favorite particle Cold Dark Matter
candidates today, focusing on those having detectable interactions: the axion,
the KK-photon in Universal Extra Dimensions, the heavy photon in Little Higgs
and the neutralino in Supersymmetry. The neutralino is still the most popular,
and today is available in different flavours: SUGRA, nuSUGRA, sub-GUT, Mirage
mediation, NMSSM, effective MSSM, scenarios with CP violation. Some of these
scenarios are already at the level of present sensitivities for direct DM
searches.Comment: 7 pages, 4 figures, 3 references added. Contribution to the
proceedings of the TAUP 07 conference, Sep. 11-15, Sendai, Japa
SuperWIMP Dark Matter Signals from the Early Universe
Cold dark matter may be made of superweakly-interacting massive particles,
superWIMPs, that naturally inherit the desired relic density from late decays
of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in
supergravity and Kaluza-Klein gravitons from extra dimensions. These particles
are impossible to detect in all dark matter experiments. We find, however, that
superWIMP dark matter may be discovered through cosmological signatures from
the early universe. In particular, superWIMP dark matter has observable
consequences for Big Bang nucleosynthesis and the cosmic microwave background
(CMB), and may explain the observed underabundance of 7Li without upsetting the
concordance between deuterium and CMB baryometers. We discuss implications for
future probes of CMB black body distortions and collider searches for new
particles. In the course of this study, we also present a model-independent
analysis of entropy production from late-decaying particles in light of WMAP
data.Comment: 19 pages, 5 figures, typos correcte
- …
