4,102 research outputs found

    Clumpy and fractal shocks, and the generation of a velocity dispersion in molecular clouds

    Get PDF
    We present an alternative explanation for the nature of turbulence in molecular clouds. Often associated with classical models of turbulence, we instead interpret the observed gas dynamics as random motions, induced when clumpy gas is subject to a shock. From simulations of shocks, we show that a supersonic velocity dispersion occurs in the shocked gas provided the initial distribution of gas is sufficiently non-uniform. We investigate the velocity size-scale relation σrα\sigma \propto r^{\alpha} for simulations of clumpy and fractal gas, and show that clumpy shocks can produce realistic velocity size-scale relations with mean α0.5\alpha \thicksim 0.5. For a fractal distribution, with a fractal dimension of 2.2 similar to what is observed in the ISM, we find σr0.4\sigma \propto r^{0.4}. The form of the velocity size-scale relation can be understood as due to mass loading, i.e. the post-shock velocity of the gas is determined by the amount of mass encountered as the gas enters the shock. We support this hypothesis with analytical calculations of the velocity dispersion relation for different initial distributions. A prediction of this model is that the line-of sight velocity dispersion should depend on the angle at which the shocked gas is viewed.Comment: 11 pages, 17 figures, accepted for publication in MNRA

    Universal statistics of non-linear energy transfer in turbulent models

    Full text link
    A class of shell models for turbulent energy transfer at varying the inter-shell separation, λ\lambda, is investigated. Intermittent corrections in the continuous limit of infinitely close shells (λ1\lambda \rightarrow 1) have been measured. Although the model becomes, in this limit, non-intermittent, we found universal aspects of the velocity statistics which can be interpreted in the framework of log-poisson distributions, as proposed by She and Waymire (1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of intermittency can be adsorbed in the parameters describing statistics and properties of the most singular structure. On the other hand, universal aspects can be found by looking at corrections to the monofractal scaling of the most singular structure. Connections with similar results reported in other shell models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]

    Coupled attribute analysis on numerical data

    Full text link
    The usual representation of quantitative data is to formalize it as an information table, which assumes the independence of attributes. In real-world data, attributes are more or less interacted and coupled via explicit or implicit relationships. Limited research has been conducted on analyzing such attribute interactions, which only describe a local picture of attribute couplings in an implicit way. This paper proposes a framework of the coupled attribute analysis to capture the global dependency of continuous attributes. Such global couplings integrate the intra-coupled interaction within an attribute (i.e. The correlations between attributes and their own powers) and inter-coupled interaction among different attributes (i.e. The correlations between attributes and the powers of others) to form a coupled representation for numerical objects by the Taylor-like expansion. This work makes one step forward towards explicitly addressing the global interactions of continuous attributes, verified by the applications in data structure analysis, data clustering, and data classification. Substantial experiments on 13 UCI data sets demonstrate that the coupled representation can effectively capture the global couplings of attributes and outperforms the traditional way, supported by statistical analysis

    GRB970228 and the class of GRBs with an initial spikelike emission: do they follow the Amati relation?

    Full text link
    On the basis of the recent understanding of GRB050315 and GRB060218, we return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow. We proposed it as the prototype for a new class of GRBs with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". Detailed theoretical computation of the GRB970228 light curves in selected energy bands for the prompt emission are presented and compared with observational BeppoSAX data. From our analysis we conclude that GRB970228 and likely the ones of the above mentioned new class of GRBs are "canonical GRBs" have only one peculiarity: they exploded in a galactic environment, possibly the halo, with a very low value of CBM density. Here we investigate how GRB970228 unveils another peculiarity of this class of GRBs: they do not fulfill the "Amati relation". We provide a theoretical explanation within the fireshell model for the apparent absence of such correlation for the GRBs belonging to this new class.Comment: 5 pages, 3 figures, in the Proceedings of the "4th Italian-Sino Workshop on Relativistic Astrophysics", held in Pescara, Italy, July 20-28, 2007, C.L. Bianco, S.-S. Xue, Editor

    Removal of reactive dyes by quaternized coconut husk

    Get PDF
    Coconut husk modified through the use of N-(3-chloro-2-hydroxypropyl)- trimethylammonium chloride was evaluated for its ability to remove reactive dyes from aqueous solution. Sorption of dyes was pH dependent and favorable sorption occurred at low pH. In contrast, natural coconut husk showed very little uptake of these reactive dyes. The maximum sorption capacities of the modified coconut husks for Reactive Blue 2, Reactive Yellow 2, Reactive Orange 16 and Reactive Blue 4 were 128.9, 182.2, 254.5 and 423.7 mg/g respectively. Column experiments using textile effluent showed that the reactive and disperse dyes in the effluent could be successfully removed

    A new scaling property of turbulent flows

    Full text link
    We discuss a possible theoretical interpretation of the self scaling property of turbulent flows (Extended Self Similarity). Our interpretation predicts that, even in cases when ESS is not observed, a generalized self scaling, must be observed. This prediction is checked on a number of laboratory experiments and direct numerical simulations.Comment: Plain Latex, 1 figure available upon request to [email protected]
    corecore