288 research outputs found
A Satisfiability Modulo Theory Approach to Secure State Reconstruction in Differentially Flat Systems Under Sensor Attacks
We address the problem of estimating the state of a differentially flat
system from measurements that may be corrupted by an adversarial attack. In
cyber-physical systems, malicious attacks can directly compromise the system's
sensors or manipulate the communication between sensors and controllers. We
consider attacks that only corrupt a subset of sensor measurements. We show
that the possibility of reconstructing the state under such attacks is
characterized by a suitable generalization of the notion of s-sparse
observability, previously introduced by some of the authors in the linear case.
We also extend our previous work on the use of Satisfiability Modulo Theory
solvers to estimate the state under sensor attacks to the context of
differentially flat systems. The effectiveness of our approach is illustrated
on the problem of controlling a quadrotor under sensor attacks.Comment: arXiv admin note: text overlap with arXiv:1412.432
Recommended from our members
Large-scale discovery of enhancers from human heart tissue.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart
Immunological Monitoring in Hepatitis C Virus Controlled Human Infection Model
Controlled human infection model trials for hepatitis C virus represent an important opportunity to identify correlates of protective immunity against a well-characterized inoculum of hepatitis C virus and how such responses are modified by vaccination. In this article, we discuss the approach to immunological monitoring during such trials, including a set of recommendations for optimal sampling schedule and preferred immunological assays to examine the different arms of the immune response. We recommend that this approach be adapted to different trial designs. Finally, we discuss how these studies can provide surrogate predictors of the success of candidate vaccines
Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence
Vigorous proliferative CD4+ T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4+ T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4+ T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4+ T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4+ T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4+ T cells. Instead, broadly directed HCV-specific CD4+ T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4+ T cell responses through antiviral therapy
Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses.
UNLABELLED: The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (\u3e92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory.
IMPORTANCE: Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses
HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma
<div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div
Abacavir-Reactive memory T Cells are present in drug naïve individuals
Background
Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population.
Methods
To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling.
Results
Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells.
Conclusions
We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection
The effects of alcohol on spontaneous clearance of acute hepatitis C virus infection in females versus males
BackgroundApproximately one quarter of persons exposed to hepatitis C virus (HCV) will spontaneously clear infection. We undertook this study to investigate the impact of alcohol on likelihood of HCV spontaneous viral clearance stratified by sex groups.MethodsPooled data from an international collaboration of prospective observational studies of incident HIV and HCV infection in high-risk cohorts (the InC3 Study) was restricted to 411 persons (or 560.7 person-years of observation) with documented acute HCV infection and data regarding alcohol use. The predictor of interest was self-reported alcohol use at or after estimated date of incident HCV infection and the outcome was HCV spontaneous clearance. Sex stratified Cox proportional hazards models were used to evaluate the association between alcohol and spontaneous clearance, adjusting for age, race/ethnicity, and IFNL4 genotype.ResultsThe median age was 28.5 years, 30.4% were women, 87.2% were white, and 71.8% reported alcohol use at or after incident infection. There were 89 (21.6%) cases of spontaneous clearance observed, 39 (31.2%) among women and 50 (17.5%) in men (p<0.01). Overall, spontaneous clearance occurred less frequently among participants who drank alcohol compared to those who did not drink (18.9% v. 28.5%, p=0.03). After adjustment for other covariates, alcohol was significantly and independently associated with lower relative hazards for spontaneous clearance of HCV in women (AHR=0.35; 95% CI: 0.19-0.66; p=0.001) but not in men (AHR=0.63; 95% CI: 0.36-1.09; p=0.10).ConclusionResults indicate that abstaining from drinking alcohol may increase the likelihood of spontaneous clearance among women
- …
