7 research outputs found

    Supplementary Material for: Reliability of Automatic Computer Vision-Based Assessment of Orofacial Kinematics for Telehealth Applications

    No full text
    Introduction: Telehealth/remote assessment using readily available 2D mobile cameras and deep learning-based analyses is rapidly becoming a viable option for detecting orofacial and speech impairments associated with neurological and neurodegenerative disease during telehealth practice. However, the psychometric properties (e.g., internal consistency and reliability) of kinematics obtained from these systems have not been established, which is a crucial next step before their clinical usability is established. Methods: Participants were assessed in lab using a 3 dimensional (3D)-capable camera and at home using a readily-available 2D camera in a tablet. Orofacial kinematics was estimated from videos using a deep facial landmark tracking model. Kinematic features quantified the clinically relevant constructs of velocity, range of motion, and lateralization. In lab, all participants performed the same oromotor task. At home, participants were split into two groups that each performed a variant of the in-lab task. We quantified within-assessment consistency (Cronbach’s α), reliability (intraclass correlation coefficient [ICC]), and fitted linear mixed-effects models to at-home data to capture individual-/task-dependent longitudinal trajectories. Results: Both in lab and at home, Cronbach’s α was typically high (>0.80) and ICCs were often good (>0.70). The linear mixed-effect models that best fit the longitudinal data were those that accounted for individual- or task-dependent effects. Discussion: Remotely gathered orofacial kinematics were as internally consistent and reliable as those gathered in a controlled laboratory setting using a high-performance 3D-capable camera and could additionally capture individual- or task-dependent changes over time. These results highlight the potential of remote assessment tools as digital biomarkers of disease status and progression and demonstrate their suitability for novel telehealth applications

    Analytical Validation of a Webcam-Based Assessment of Speech Kinematics: Digital Biomarker Evaluation following the V3 Framework

    No full text
    Introduction: Kinematic analyses have recently revealed a strong potential to contribute to the assessment of neurological diseases. However, the validation of home-based kinematic assessments using consumer-grade video technology has yet to be performed. In line with best practices for digital biomarker development, we sought to validate webcam-based kinematic assessment against established, laboratory-based recording gold standards. We hypothesized that webcam-based kinematics would possess psychometric properties comparable to those obtained using the laboratory-based gold standards. Methods: We collected data from 21 healthy participants who repeated the phrase “buy Bobby a puppy” (BBP) at four different combinations of speaking rate and volume: Slow, Normal, Loud, and Fast. We recorded these samples twice back-to-back, simultaneously using (1) an electromagnetic articulography (“EMA”; NDI Wave) system, (2) a 3D camera (Intel RealSense), and (3) a 2D webcam for video recording via an in-house developed app. We focused on the extraction of kinematic features in this study, given their demonstrated value in detecting neurological impairments. We specifically extracted measures of speed/acceleration, range of motion (ROM), variability, and symmetry using the movements of the center of the lower lip during these tasks. Using these kinematic features, we derived measures of (1) agreement between recording methods, (2) test-retest reliability of each method, and (3) the validity of webcam recordings to capture expected changes in kinematics as a result of different speech conditions. Results: Kinematics measured using the webcam demonstrated good agreement with both the RealSense and EMA (ICC-A values often ≥0.70). Test-retest reliability, measured using the absolute agreement (2,1) formulation of the intraclass correlation coefficient (i.e., ICC-A), was often “moderate” to “strong” (i.e., ≥0.70) and similar between the webcam and EMA-based kinematic features. Finally, the webcam kinematics were typically as sensitive to differences in speech tasks as EMA and the 3D camera gold standards. Discussion and Conclusions: Our results suggested that webcam recordings display good psychometric properties, comparable to laboratory-based gold standards. This work paves the way for a large-scale clinical validation to continue the development of these promising technologies for the assessment of neurological diseases via home-based methods
    corecore